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Abstract—The sweet spot can be interpreted as the region
where acoustic sources create a spatial auditory illusion. We study
the problem of maximizing this sweet spot when reproducing a
desired sound wave using an array of loudspeakers. To achieve
this, we introduce a theoretical framework for spatial sound
perception that can be used to define a sweet spot, and we
develop a method that aims to generate a sound wave that
directly maximizes the sweet spot defined by a model within
this framework. Our method aims to incorporate perceptual
principles from the onset and it is flexible: it imposes little to
no constraints on the regions of interest, the arrangement of
loudspeakers or their radiation pattern. However, the perceptual
models must satisfy a convexity condition, which is fulfilled by
state-of-the-art monaural perceptual models, but not by binaural
ones. Proof-of-concept experiments show that our method, when
implemented with van de Par’s monaural model, outperforms
state-of-the-art sound field synthesis methods in terms of their
binaural azimuth localization and binaural coloration properties.

Index Terms—Spatial sound, sound field synthesis, sweet spot,
perception, psycho-acoustics, non-convex optimization.

I. INTRODUCTION

The field of spatial sound addresses the question: how do
we create a desired spatial auditory illusion over a spatial
region of interest with a set of acoustic sources? [1, Chapter
2.3]. The spatial auditory illusion (SAI) occurs when acoustic
sources create a sound scene that produces a desired auditory
scene over a region. It is related to sound quality as described
by Wierstof et al [2, Chapter 2]: “The quality of a system
as perceived by a listener is considered to be the result of
assessing perceived features with regard to the desired features
(of the auditory scene).” Following Blauert, the sound scene
represents the objective nature of a sound wave propagating
in the physical world, whereas the auditory scene represents
the imprint of the sound scene in our subjectivity, that is, the
result of the auditory system perceiving and organizing sound
into meaning [3]. Over the last century, several methods have
been proposed to answer this question. Their performance can
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be compared in terms of the size of the region where the SAI
is achieved. In this work, we call this region the sweet spot.

The term sweet spot is already used in panning and sur-
round systems to describe an ideal listening position that
is equally distant to all loudspeakers [4] and around which
there is a limited area where a desired wavefront is correctly
recreated [1, Chapter 3.1], [S]. It is also used to mean the
“area in which the spatial perception of the auditory scene
works without considerable impairments” [6, Chapter 1.2].
Furthermore, in [7] the sweet area is defined as the “area
within which the reproduced sound scene is perceived as
plausible,” where plausible means the preservation of front
localization and envelopment of reverberation. Our use of the
term is in the spirit of the second and third ideas.

One of the earlier and most widespread spatial sound
approaches is stereophony and its generalizations, surround
systems [8] and Vector Base Amplitude Panning (VBAP) [9].
These methods, also called panning techniques, adjust the level
and time-delay of the audio signals for each speaker utilizing
a panning law to steer the perceived direction of the sound
source. The possibility of this steering has been explained
by the perceptual idea of summing localization and by the
association model [1, Chapter 6.1]. Moreover, due to some
psycho-acoustic features of the auditory system, such as the
binaural decoloration mechanism, they work sufficiently well
in some applications, even with few speakers [4]; they do not
suffer from coloration [10]. However, they can only simulate
sound sources that lie on the segments that join the speakers.
Furthermore, its quality degrades rapidly as the listener moves
away from the center of the target region [4].

A popular strategy to recreate an auditory scene is to
directly approximate the sound wave that created it. In the
literature, this strategy is called sound field synthesis, sound
field reproduction or sound field reconstruction. Following
Huygens’ principle [11], any sound scene can be approximated
accurately with a sufficiently dense arrangement of loudspeak-
ers. However, in practice there is only a limited number of
them. Three classes of commonly used methods for sound
field synthesis are mode matching methods, pressure matching
methods and wave field synthesis.

Mode Matching Methods (MMM) match the coefficients
in the expansion of the target and generated sound waves in
spatial spherical harmonics [12]. Some well-known MMMs
are Ambisonics [13], Higher-Order Ambisonics (HOA), and
Near-Field Compensated Ambisonics (NFC-HOA) [14]. All of
them are designed for circular or spherical regions of interest.
When approximating a plane wave, they create a central



spherical region with a radius that is inversely proportional
to the frequency of the source over which the sound scene
is reconstructed almost identically [15]. Some variations of
these methods consider a weighted mode matching problem
to prioritize certain spatial regions [16], a mixed pressure-
velocity mode matching problem [17], and an intensity mode
matching problem [18].

Instead of using expansions in spatial spherical harmonics,
Pressure Matching Methods (PMM) minimize the spatio-
temporal L2-error between the target and generated sound
waves [19]. The magnitude of the audio signals are often
penalized by their LP-norm to mitigate the effects of ill-
conditioning [20]. Typically the loudspeakers are modeled as
monopoles. In most cases, the solution can only be found
numerically, and the discretization of the region of interest
plays an important role [21], [22].

Finally, Wave Field Synthesis (WFS) leverages the single-
layer boundary integral representation of a sound wave over
a region of interest [4], [23], [24]. It has been shown that
the localization properties of the auditory scene are correctly
simulated by WFS and do not depend on the position of
the listener over the region of interest [25]. However, this
technique suffers from coloration effects due to spatial aliasing
artifacts [26].

There is extensive literature analyzing these methods and
comparing their performance [14], [27], they become equiva-
lent in the limit of a continuum of loudspeakers, differing only
when using a finite number of them [28]. Although they are
amenable to mathematical analysis and have computationally
efficient implementations, their construction has no natural
perceptual justification to produce a large sweet spot. As a
consequence, the artifacts introduced by these methods, due
to approximation errors, may produce noticeable, and possibly
avoidable, perceptual artifacts.

An alternative to better reproduce the auditory scene is to
explicitly account for psycho-acoustic and perceptual princi-
ples in the reconstruction methods [6]. The first steps in this
direction were taken in [29] by proposing a simple model that
aims to preserve the spatial properties of the desired auditory
scene. A method to reproduce an active intensity field that is
largely uniform in space was then proposed in [30]. It is based
on an optimization problem yielding audio signals where at
most two loudspeakers are active simultaneously. However, it
makes the restrictive assumption that the target sound wave is
a plane wave, and that the loudspeakers emit plane waves.
In [31] the radiation method and the precedence fade are
proposed. The former is equivalent to applying a PMM over
a selection of frequencies that are most relevant psycho-
acoustically, whereas the latter is a method to overcome the
localization problems associated to the precedence effect [32].
Finally, in [33] a PMM is extended to account for psycho-
acoustic effects by considering the L2-norm of the differences
in pressure convolved in time by a suitable filter.

We believe that there is a gap between methods that aim
to directly approximate a sound wave to reproduce a desired
auditory scene, and methods that leverage perceptual models
to reproduce the same auditory scene. Defining the sweet
spot requires a model, either theoretical or empirical, of audio

perception. In this work, we introduce a theoretical framework
for spatial audio perception, and we develop a method to
maximize the sweet spot defined by a model within this
framework. Our method is amenable to mathematical analysis,
has an efficient computational implementation, and is guided
by perceptual principles. Our numerical results show that our
method outperforms some state-of-the-art methods for sound
field synthesis.

The paper is organized as follows. In Section II we introduce
the physical assumptions we make, and a theoretical frame-
work for spatial audio perception, deferring to Appendix A
the technical details. Then, in Section III we introduce an
intuitive and readily implementable instance of our method
to maximize the sweet spot defined by a model within this
framework. In Section IV we discuss the perceptual concepts
that, to our knowledge, can be incorporated in the theoretical
framework. In Section V we present an implementation of our
method. In Section VI we perform proof-of-concept numerical
experiments analyzing the performance of our method, com-
paring its results with WFS, NFC-HOA and PMM. Finally,
in Section VII we discuss our results, the limitations of our
method, and some future lines of research.

II. FRAMEWORK FOR SPATIAL SOUND WITH
LOUDSPEAKERS

A. Acoustic framework

Consider ns loudspeakers located at positions z1,...,z,, €
R3. When the medium is homogeneous and isotropic and each
loudspeaker behaves as an isotropic point source, i.e., as a
monopole, the physical sound wave u generated is represented
in frequency as [34, Section 2.5.2]
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where c is the speed of sound, a1, ..., a,, are the audio sig-
nals driving each loudspeaker, and ay, is the Fourier transform
of ay in time

Gn(f) = / an(B)e=27 1" dt.

From now on, we let ~ denote the Fourier transform in time.
To model the spatial radiation pattern of each loudspeaker, or
time-invariant effects such as reverb [35], [36], we may use

() = 3 ar(f)Gi(f ), @
k=1

where G} is the Green function of the k-th loudspeaker.
In addition to the array, we consider a region of interest
Q c R3 such that z, ¢ Q; thus, it contains no singularity
in (1). On this region, we may approximate a sound wave
ug as best as possible with the array of loudspeakers. If we
had a continuum of monopoles on 02 then, under suitable
conditions, the simple source formulation [37, Section 8.7]
shows we can reproduce uq exactly. However, when only a



finite number of physical loudspeakers are available, we must
find @y, ...,qQ,. such that

s
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in an suitable sense, for x € Q. When each Gy, is real-analytic
on its second argument the approximation cannot be exact on
any open set unless ug was actually generated by the speaker
array [38, Corollary 1.2.5]. This suggests that perfect sound
field reconstruction is impossible, and that the difference can
be small only on average. Even then, the approximation can
be perceptually accurate in some subset of ().

NGr(f,2), 3)

B. Perceptual framework

The comparison in (3) is between two physical quantities.
To incorporate perceptual effects, we formally introduce a
theoretical framework and defer the mathematical details to
Appendix A-A.

The perception of an individual located at =z € € and
looking in the direction represented by a unit vector 6 in
R? (or an angle in R?) depends on the relation between the
sound wave at the left and right ears. Hence, we consider
pairs of signals u’,u”, denoting left and right signals, so
that u® = wu®(t,z,0) represents the wave that reaches the
ear s € {{,r} of a listener located at = and looking in the
direction 6 at time t. We let ufxﬁ) represent the signal at ear
5. We denote @ = (u’,u") this pair of signals, and let TV be
the space of all such pairs of signals. Then, instead of (2),
now we consider

u*(f,x,0) Z a(
where H} is the head-related transfer function [3] associating
to a wave emitted by the k-th loudspeaker the sound wave
reaching the ear s; this comprises the behavior of the loud-
speakers. From now on, we let W be the set of all pairs of
signals generated by model (4) and we always use ~ to denote
pairs of left and right signals.

Therefore, the problem is to approximate the fixed target
1 associated to the sound wave ug by a « where each signal
is represented as (4) that is perceptually close to ugy. To
model the perceptual dissimilarity we introduce a map D that
associates to a pair u, ug the function D g 5,y = D(ﬂ,ao)(:c, 0)
that quantifies the dissimilarity between the signals @ and g
perceived by a listener located at x and looking in the direction
6. We do not make strong assumptions on D except that it is
convex on its first argument: for any choice of pairs of signals
U1, Us We must have

D(/\ﬂ1+(1—>\)ﬂ2,ﬁg)($»9) < /\D(m,ﬂo)(xve)
+ (1 - )‘)D(ﬂmﬁo)(xvg)

for any A € [0, 1]. We assume the dissimilarity is negligible
if D(3,5,)(x,0) < 0. Depending on the application, this may
be interpreted as authenticity, i.e., @ is indiscernible from g,
or as plausibility, i.e., some perceived features of u and wug
show a context-reasonable correspondence [2, Chapter 2]. In
Section IV we discuss some functional forms for D.
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Suppose a listener at « can look only along some directions
of interest ©,. We define the auditory illusion threshold as

Tpu(z) = eseug) D (g,a0)(x,0). (6)

A listener located at x will perceive no noticeable differences
between « and g regardless of the direction she is looking if
Tpu(z) < 0. Hence, the sweet spot

S(a) = {z € Q: Tpa(z) < 0} )

is the region within ) where a listener does not perceive
significant differences between « and ug. We define a loudness
discomfort threshold similarly: we assume there is a function
L that associates to @ the function L; = L (x,6) quantifying
the loudness discomfort experienced by a listener at a location
x looking in a direction 6. We also assume L satisfies (5) and
we define the loudness discomfort threshold

Tra(z) = esug) Li(z,0).
€0,

We assume that Tpa(x) < 0 when no discomfort is ex-
perienced. Hence, to avoid choosing a signal u that causes
discomfort, we restrict our choices to

P:={ueW: Tru(z) <0 for ae. z € Q}. 8)

Consequently, our goal is to find a u € Wg that maximizes
the weighted area of the sweet spot 1(S(%)) while causing no
discomfort by solving

(Fo)

III. THE SWEET-RELU METHOD

We present an instance of our method to approximate the
solution to (P,). We defer the analysis of our general method
to Appendix A. Let 4 : R — R be such that h(t) =0if t <0
and h(t) = 1if t > 0. Since

w(S@) = u(Q) = | WTpu(z)) du(x),

Q
maximizing p(S(@)) implies minimizing the second term in
the right-hand side. This is challenging as h is piecewise
constant. Hence, for € > 0 we define the continuous approxi-
mation %, : R — R of h as he(t) = 0 for t < 0, ho(t) = t/e
for ¢t € [0,¢] and h.(t) = 1 for t > e. We can solve

[ eToute)) dua)
Q

Let Q. () := {z € Q: Tpu(z) < e}. The objective can be
decomposed as

ié@xnmu»mmw+um4mﬂ
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where (t); = max{0,t}. The first integral is the contribution
from the region where we may change « to decrease the audi-
tory illusion threshold, whereas the second is the contribution
of the region over which it is already too large. Thus, we
proceed iteratively: choose 0y C Q, and for k > 1 define the
sets U1 = Qi N Qe (@) where @y, is the solution to
(PSKHY)  minimize é}%wwnwwy



Algorithm 1: SWEET-ReLLU
input: A decreasing sequence {¢;} of positive
numbers, positive integers n., yax, initial g
fori=1,...,n. do
for j =1,...,nmax do
tij < SOLVE(PSReLV)
Qj+1 < Qj N {l’ c: Tﬂ](m) < 61‘}

end
set Ul Up,,.
set :Q «—{zxeQ: Tpu,,, (z)<e}

end
return )
€

The above problem is convex, whence j, can be found using
efficient algorithms. We can show that the sequence {@y }ren
has at least one accumulation point. We regard this accumula-
tion point #* as an approximation to the solution to (PSReLV)
that yields an approximation . (@*) to the optimal sweet spot.
Once the sequence has converged, we can repeat the procedure
for a smaller value £’ < ¢ choosing Q. (a*) as the initial set.
By iteratively running the algorithm for increasingly smaller
values of ¢ we expect to obtain an increasingly accurate
approximation to a solution to (FPp). Although we cannot prove
this at the moment, our results show we obtain reasonable
results using this method. We call this instance of our method
SWEET-ReLU (Algorithm 1). We defer a justification of these
facts to Appendix A and the deduction of this instance to
Appendix A-E.

IV. PERCEPTUAL AND PSYCHO-ACOUSTIC THEORY

The theoretical framework introduced aims to be flexible
enough to account for a variety of perceptual and psycho-
acoustic models. However, there are some perceptual and
psycho-acoustic effects whose present models, to our knowl-
edge, are outside this framework; this does not preclude that
these effects may be modeled within our framework in the
future. To understand the consequences of this, we now present
some of the perceptual and psycho-acoustic considerations that
lead to models within this framework.

The spatial auditory illusion (SAI) is achieved when the
imprint of the reproduced sound scene on a listener resembles
a desired auditory scene. The formation of the auditory scene
depends not only on the signals reaching the listener’s ears but
both on the listener itself [39]. Also, it may even be influenced
by external visual, tactile, and proprioreceptive stimuli [40].
Formulating a model accounting for all these effects goes
beyond the scope of this work. Instead, we focus on proposing
maps D and L representative of an average listener or worst-
case listener, and motivated by the concept of auditory event,
which is only related to the perceptual processing of the ear
signals. The auditory scene is then regarded as the integration
of different and separable auditory events.

The process of extracting auditory events from ear signals
has been studied in the field of auditory scene analysis
(ASA) [41], [39]. Although the psycho-acoustic and cognitive
mechanisms involved are the focus of current research [1,

Chapter 2.1], the quantitative modeling of the process has
been carried out by the field of computational auditory scene
analysis (CASA) [42]. The analysis of auditory scenes is a
combination of bottom-up, or signal driven, and top-down, or
hypothesis driven, processes [43]. In the former, the physical
properties of the input signal, which are processed at the
peripheral auditory system, serve as a basis for the forma-
tion of auditory events and are summarized under primitive
grouping cues [41]. In the top-down process higher cognitive
processes such as prior knowledge turn into play to determine
which signal components the listeners attend to and how
these components are assembled and recognized, involving
processes that are referred to as schema-based cues [41].
Although a complete model of auditory events formation
should also consider top-down processes, for simplicity we
focus only on primitive grouping cues. These allow us to
compare U, g) and Ug (,9) by accounting mostly for the
immediate psycho-acoustic peripheral processing.

The direct comparison between the auditory scene generated
by uw and ug leads to the full reference (FR) model. In
contrast, in the internal references (IR) model the auditory
scene is compared to abstract representations in the listener’s
memory [44, Chapter 2.6]. Although FR models have been
shown to have limitations [45], e.g., it is not always clear
which binaural input signal is related to what the listener really
desires to hear, we focus exclusively on them for simplicity.
Otherwise schema based cues would be needed.

Spatial sound applications identify the most important fea-
tures [2, Chapter 2] of the auditory scene in a multidimensional
approach [44, Chapter 3.2]. In Letowski’s simple model [46],
the auditory scene is described in terms of “loudness, pitch,
(apparent) duration, spatial character (spaciousness), and
timbre.” The last two are selected as the more important for
spatial sound applications. The analysis of the most important
features for spatial sound applications has been recently re-
fined in [47], once again calling attention to timbral and spatial
features. More specifically, azimuth localization and coloration
are widely used features for the perceptual assessment of
multi-channel reproduction systems [6], [10], [26]. Motivated
by these studies, we focus on models that account only for
coloration and azimuth localization. The trade-off is that these
models can, at best, account for plausibility of the SAI,
more than authenticity. Since the detailed biophysics of the
phenomena are not necessary to model an accurate input-
output relation, we only consider functional (phenomenolog-
ical) models instead of physiological (biophysical) ones [48,
Chapter 1.2].

A. Binaural azimuth localization

Azimuth localization is the estimation of the direction of
arrival of the incoming sound in the horizontal plane. In
concordance with Lord Rayleigh’s duplex theory [49], the
literature shows that interaural time differences (ITDs) are
the primary azimuth localization cue at low frequencies [50]
whereas interaural level differences (ILDs) become relevant
at high frequencies as to resolve ambiguities in the decoding
of ITDs [51] which appear over 1.4 kHz [52]. Consequently,



binaural models, i.e., models that use both the right and the left
ear signals as inputs, are crucial, and most of these models for
azimuth localization focus on the extraction of the ITDs. The
cross-correlation between the left and right ear signals [53]
is usually used to model the mechanism for extraction of
the ITDs, e.g. [54], [55] and azimuth localization. Other
models [51], [56] have appeared after the cross-correlation
model was challenged by physiological findings [57]. The
extraction of the ITDs using cross-correlation (or as in [51],
[56]) and the extraction of ILDs, lead to dissimilarity maps
D that do not satisfy (5). As we cannot model this effect
within our framework at the moment, we look for alternative
approaches in Section IV-C.

B. Binaural coloration

Coloration is commonly defined as timbre distor-
tion [26], [1, Chapter 8.1] where timbre is the property that
“enables the listener to judge that two sounds which have, but
do not have to have, the same spaciousness, loudness, pitch,
and duration are dissimilar” [46]. Although timbre could
be quantified in a spectro-temporal space, the metric of the
timbral space is not known and could be non-trivial [26].

Binaural perceptual effects such as binaural unmasking, spa-
tial release from masking [58], and binaural decoloration [59],
allow the auditory system to improve the quality of the
perceived sound in terms of signal-to-noise ratio (SNR) iden-
tifiability and coloration. Even though these effects make
defining an accurate binaural metric even more challenging,
binaural detection and masking models have been developed
in the literature [60]. They can be used to detect binaural
timbral differences, and have been adapted to account for
localization cues [61]. Furthermore, a model accounting for
binaural perceptual attributes, such as coloration and localiza-
tion, is proposed in [62]. More recently, a model for binaural
coloration using multi-band loudness model weights to analyse
the perceptual relevance of frequency components has been
developed [63]. Similarly to the extraction of ITDs, these
binaural methods once again lead to dissimilarity maps that
do not satisfy (5). This leads us to consider monaural models
in Section I'V-C.

C. Monaural models

To our knowledge, the binaural models in the literature do
not lead to dissimilarities satisfying (5). In contrast, under
suitable assumptions, monaural models, i.e., models that need
just one ear signal as input, do. Furthermore, they can be
applied independently over each ear, to then use a worst-case
scenario methodology [64] to extend them to binaural signals.
We follow this approach and focus on monaural models as
surrogates to capture coloration effects. Monaural spectral lo-
calization models have been developed for localization across
the sagittal plane, and also for localization across the azimuthal
plane [65], but, to our knowledge, they do not satisfy (5).

Models to detect monaural distortion aim to determine when
two audio signals so = so(t) and s = s(t) are perceived as
different, and how this perception degrades as a function of
the dissimilarities between sg and s. To achieve this, two main

ideas are used for the estimation of audible distortions: the
masked threshold and the comparison of internal representa-
tions [64].

The masked threshold compares the error signal € = s — g
against so using a perceptual distortion function D*(e, sg).
The error is assumed to be inaudible if this value is less
than a fixed masking threshold [66], [67]. The comparison
of internal representations leverages a model for an internal
representation s — Ig(s) resulting from the signal trans-
formations performed in the ear. The internal representations
are compared using an internal detector (Ig(s),Ir(so)) —
D*(Ir(s),Ir(sp)) and the difference between the signals
is assumed to be perceptible if this value exceeds a given
threshold [68], [64]. These studies do not provide analytical
expressions that satisfy (5) for the representation nor for the
internal detector. An approximation yielding such expressions
is given in [69]; another simplified model is developed in [70].

The models developed in [66], [69], [70] yield monaural
dissimilarity maps D that satisfy (5). These methods can be
represented as

D™(s,s0) = B1(s — s0) + ...+ Bp, (s — s0) )

where B,... B, are filters of the form

By(s — so) = /]R

for a suitable function Kp, representing a time-variant or
time-invariant filter that may depend on s itself. In [66], [70]
the filters By represent the auditory distortion over the k-th
auditory filter of the cochlea, whereas in [69] the sum reduces
to only one locally time invariant filter that accounts for the
whole auditory distortion. Although monaural, these models
can be used for binaural signals 5 by taking the worst distortion
between ear signals [64]

2
/KBk(t,t')(sfso)(t/)dt' dt  (10)
R

DP’(3,50) = max{D™(s",s5), D™(s",s5)}.  (11)

D. Discomfort

To model the loudness discomfort L we consider empirical
evaluations of discomfort. This is a simplification motivated
by computational simplicity and also by a small number of
comprehensive studies on the subject. Empirical thresholds for
loud discomfort levels for sinusoidal signals over a finite set
of frequencies have been defined in the literature, e.g. in [71],
[72]. Naturally, for a sinusoidal signal of frequency fj these
can be expressed with the monaural expression

Quls) = / SHI o), (12)

where pi(f) = (v(f)/nk)?, 7 is a narrow band-pass filter
centered around fj, and 7, € R, is the discomfort threshold
at fi. Finally, for binaural signals, these models can be applied
taking the worst discomfort between ears as in (11).



V. IMPLEMENTATION

We implement SWEET-ReLU to approximate a sound wave
generated by a monopole emitting close to a single frequency
fo. We call this a (pseudo) sinusoidal source. We consider
this to be a proof-of-concept implementation to illustrate the
performance of the method.

A. Implementation of acoustic framework

The original sound wave uq is assumed to be emitted by
a monopole at o € R3. Each loudspeaker is assumed to
radiate as a monopole. Hence, the sound wave u generated by
the array is given by (1) with @ (f) = ag e~ (/=70)*/20" for
coefficients a, € C and a fixed spectral localization parameter
o<1

B. Implementation of the perceptual framework

Monaural distortion detectability methods cannot represent
the necessary features to correctly define an auditory illusion
map as described in Section IV. Hence, they may not be op-
timal when modelling binaural perception. For instance, they
cannot represent explicitly any type of azimuth localization,
nor binaural coloration effects. However, they can represent
monaural coloration effects, and some yield dissimilarity maps
satisfying (5). For this reason, we use a monaural model as a
proof-of-concept. We use van de Par’s spectral psycho-acoustic
model [66]. Although it is suboptimal when modeling tempo-
ral masking effects, the signals we consider are stationary,
whence temporal masking is almost non-existent.

This monaural model can be applied to binaural signals by
using the worst-case as in (11). For z € Q and 6 € O, we
apply this model to the left and right ear signals @(z,6) and
tg(x, ). As van de Par’s model can be represented by time-
invariant filters in (10), for s € {¢,r} we have that

Bju®(x,0) /| a* =) (f,x,0)pp, (f, z,0)df
where pp; depends on ug as

w;(f)
Ca+ [plug(fz,0)2w;(f)df

The constant C'4 > 0 limits the perception of very weak
signals in silence. The weight w; is defined as w; := |nvy;|?
where

logyon(f)

models the outer and middle ear as proposed by Terhardt [73]
with Cy, 0 = 4.69, C, 1 = 18.2 x 10M4, €y, 2 = 32.5 x 1077
and Cp 3 =5 x 1071, and

9457(f — f;)\
o= (1 () )
models the filtering property of the basilar membrane in the
inner ear at the center frequency f;, where the Equivalent
Rectangular Bandwidth (ERB) of the auditory filter centered
at f; is ERB(f;) = 24.7(1 4+ 4.37 x 1073 f;) ! as suggested
by Glasberg and Moore [74]. The center frequencies f;

pB (f’x 0)

=Cho—Cpif "8 —Cpa(f—3.3x10%)2+C, 3£

are uniformly spaced on the ERB-rate scale ERBS(f) =
21.41og(1 + 4.37 x 1073f). In van de Par’s model, the
distortion is noticeable when its metric is greater or equal to
1. Hence, the monaural dissimilarity map becomes

_ (@ —ag)(f,, 9)|2wj(f)df
wi(@:0) = —1+COZ oA+fR|uo 7. 0w, (Ndf

_ (@ —ag)(fo,x,0)*w;(fo)
1+Cojz:1 CA—i—w] f0)| (f07x’9)i2

where C) = 2'/471/25Cy and we used the approximation for
(pseudo) sinusoidal signals

/R (ONas(f. 2, 0) df ~ V21 2wo0(fo)lag(fo, . 0)|?

Dy:

Q

when ¢ < 1. The constants C{; and C4 are defined as
suggested in [66]. This accounts for the absolute threshold
of hearing and the just-noticeable difference in level for sinu-
soidal signals, which gives, C{, = 1.555 and C4 ~ 4.481 when
considering n;, = 100 as the number of center frequencies, and
f1 =20, fn, = 10° as the first and last center frequency. The
worst-case extension of this perceptual dissimilarity to binaural
signals is given by

Da,ay(,0) = max{D}, . (z,0), D} . (x,0)}.

To model the loudness discomfort we use the experimental
results in [71] about the discomfort caused by sinusoidal
signals. We interpolate the data in this study with cubic splines
with natural boundary [75, Section 8.6] to obtain a function
nr > 0. Therefore, following (12) we consider

ng(x,e)z—HCi/l (fsa,0)pr(f)df
(fovxie)/nL(fO)F

where p;, = (vo/np)? and the same approximation holds
by the same arguments as before. Naturally, C] = 1, as the
empirical thresholds in [71] are attained when L™u®(z) < 0.
Then, the worst-case extension to binaural signals is

Ly(x,0) = max{L}(x,0), Ly (x,0)}.

~ -1+ Cllu’

Although this implementation is intended to study single-
frequency signals, it can be generalized to multifrequency
signals. The generalization of D™ is direct and it comprises
additional terms in the sum. The generalization of L™ to a
multifrequency signal could sum the discomfort associated to
each frequency, similarly to the way the auditory filter errors
are summed in D™, or it could use an integrating function
as indicated in Section IV-D. These are simple heuristics for
a proof-of-concept study, and their effectiveness should be
validated experimentally.

C. Discretization

In a typical experiment, listeners are seated in a room, and
their locations and orientations within the room are determined
in advance. In this case, a simplification consists in defining
the sweet spot in terms of the number listeners for which the
SAI is achieved. If the listeners can be located at finite number



of points z1, ..., z,, € € then we can model the weighted area
of the sweet spot as

ne
w(S(@) =3 Toa(z), (13)

=1
which is equivalent to assuming y is an atomic measure. In this
case, every component of the proof-of-concept implementation
can be evaluated either in closed-form, as is the case of the
weighted area or the Green function of the loudspeakers, or
can be approximated to very high-accuracy, as is the case of
the head-related transfer functions (see Section VI for details).

The approximation (13) can be used when there is a

discrete number of locations for listeners in a room. In other
applications where it is necessary to control a continuum, e.g.,
when listeners may move across the room, quadrature rules
must be used. In this case, the approach to solve (P) follows
an approximate-then-discretize approach, and numerical errors
may have an effect on the sweet spot computed in practice.

VI. EXPERIMENTS

For the experiments we compare the performance of our
method with the state-of-the-art methods WFS, NFC-HOA and
L2-PMM in terms of its azimuth localization and coloration
performance, as they are the main features of the auditory
scene for spatial sound. See [76] for the implementation in
Python. We use Dietz’s model to measure binaural azimuth
localization [51] and McKenzie’s model for binaural col-
oration [63]. The setup for the numerical experiments consists
of an equispaced arrangement of 20 loudspeakers lying on a
circle of radius 2.5 m and at w/4 = 0.785 m from each other.
The region of interest € is a concentric circle of radius 2.4975
m (Figs. 1j, 2j). The speed of sound is ¢ = 343 m/s. Two
instances of this setup were evaluated: the near-field instance,
where the source is outside the arrangement at 5 m of its
center with ag = 68 dB, and the focus-source instance, where
the source is inside the arrangement at 0.82 m of its center
with ay = 60 dB (Figs. la, 2a). In both cases, fo = 343 Hz.
To construct the perceptual maps D and L we assume that a
listener located at x looks at the virtual sound source, that is,
0, = {ang(zo — 2)}.

The SWEET-ReLU algorithm and the L?-PMM method
were implemented in Python 3.8 using the CVXPY package,
version 1.1.15 [77], [78] and MOSEK, version 9.3.6 [79].
The simulations of 2.5D NFC-HOA and 2.5D WFS were
done with the Sound Field Synthesis Toolbox (SFST), version
3.2 [80], except for the focus source 2.5D NFC-HOA sim-
ulations, which were done following the angular weighting
approach [81] as proposed in [82, Chapter 5.6.2]. The HRTFs
used to simulate u and ug were constructed as the circulant
Fourier transform of the elements of the TU-Berlin HRIR
free data base [83]. Dietz’s and McKenzie’s models were
implemented using Matlab 2022a with the Auditory Modelling
Toolbox (AMT), version 1.1 [84].

For the implementation of the HRTFs, the 3 meters radial
distance HRIRs of the data set were radially extrapolated
using delay and attenuation, according to the map d +—
(3/d)HRIR(t — (d — 3)/c), where d is the desired radial

distance. For short distances, e.g. less than 1 m, ILDs vary
significantly with distance [83]. Hence, the experiments might
be enhanced by using a complete HRTF data set.

For the implementation of Dietz’s model, since we treated
(pseudo) sinusoidal signals, the interaural phase differences
(IPDs) of the reproduced signals were extracted manually
as IPD(u(z,0)) = arg(u’(x,0)u"(x,0)*). Since fo = 343
Hz, the IPD to estimated azimuth localization is an injective
map [51]. Thus, from the relation ITD = IPD/(—27 f) [51],
the estimated azimuth localization was obtained by plugging
the ITDs into the itd2angle.mat AMT function, which
uses the itd2angle_lookuptable.mat AMT table. The
latter table is based on Dietz’s model and is constructed with
the same HRTFs that we consider for the simulation of % and
ug. For the implementation of McKenzie’s model, the binaural
signals were transformed to time-domain using a sampling
frequency of 44100 Hz and a number of samples of 256. For
the implementation of the SWEET method, we have chosen ¢;
adaptively with percentile p = 99. For SWEET and L2-PMM
a uniform discretization of 2348 points was used for (2 at a
distance of at most 0.09 m, achieving more than 30 points per
wavelength.

[ SWEET NFC-HOA  WFS  L2?-PMM ||
NF CSS 70.2% 60 % 55% 33%
NF LSS 68.4% 429%  419%  52.3%
FS CSS 58.2% 29.3% 0% 5%
FS LSS 54 % 42.9% 162%  40.1%
FS LSS (H)  50.8% 37.8% 125%  28.9%

TABLE I: Localization (LSS) and coloration (CSS) sweet
spots over {2 fractions in near-field (NF) and focus-source (FS)
instances. (H) disregards the convergent halfspace.

To compare the performance of the methods, we measure
the size of the localization sweet spot (LSS) and coloration
sweet spot (CSS). The former is the region where the perceived
azimuth localization measured by Dietz’s model deviates no
more than 5 degrees from the desired one, whereas the latter
is the region where the coloration measured by McKenzie’s
model is lower or equal than 13 sones. As discussed in [63],
a coloration lower than 13 sones is strongly correlated with
empirical MUSHRA tests with more than 80 out of 100 points.
It should be noted that, since we analyse sinusoidal signals of
frequency 343 Hz, in these experiments the CSS and LSS
are constituted by the points where the interaural amplitude
or phase (respectively) of the binaural signal are correctly
reconstructed. For this reason, we also show the IPDs over
Q.

The LSS, CSS and IPDs generated by each method for the
near-field and focus-source instances are shown in Fig. 1 and 2
respectively. The size of the LSS and CSS is shown in Table I.
The blue zones of Figs. 1k-r, Figs. 2k-r represent the sweet
spots of each case. The estimated localization in Figs. 1k-n,
Figs 2k-n is shown for deviations of 0 to 90 degrees from
the desired one. Greater deviations are represented by a dot
with no direction. Since the potential listeners are looking to
the virtual source, the desired IPDs are equal to O in each
spatial point by symmetry. Furthermore, as in Dietz’s model
the perceived azimuth localization is a function of the IPDs
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Fig. 1: Near-field instance. Left panel: 1o(fo) (real part), (j) Instance configuration (spatial units in meters). Right panel rows:
Near-field @( fy) (real part); IPD(@); Dietz’s azimuth localization, where the direction of the arrows is the perceived localization
whereas the color is the deviation in degrees of the perceived localization from the desired one; McKenzie’s coloration (sones).
Right panel columns: SWEET-ReLU, NFC-HOA, WFS, L2-PMM. The shading of the speakers is proportional to their gain.

at low frequencies, the regions where the IPD deviates from
0 at Figs. 1f-i and Figs. 2f-i strongly correlates with the LSS
in Figs. 1k-n and Figs 2k-n, respectively.

For the near-field instance, both the LSS and CSS generated
by our method are more than 20 and 10 points (respectively)
larger than that generated by any other method. The LSS
and CSS generated by NFC-HOA (Figs. 11, 1p) are centered,
whereas that generated by WFS (Figs. 1m, 1q) are localized
farther away from the source. This is correlated with their
degradation of the sound field, which is consistent with the
analysis in [14]. Moreover, their LSS are consistent with the
empirical results exposed in [25]: the perceived localization
for NFC-HOA degrades away from the center, whereas for
WES the perceived localization is fairly good over almost all
the listening region. However, we believe that the perceived
localization for WFS and NFC-HOA behaves slightly worse
here than in [25] because we analyze sinusoidal signals instead

of Gaussian white noise, which has uniform spectral content.
In contrast, the LSS and CSS generated by our method (Figs.
1k, lo) behave like those generated by WFS, but almost
encompasses those generated by NFC-HOA. The LSS of L2-
PMM (Fig. In) is larger than that of WFS and NFC-HOA,
but its CSS (Fig. 1r) is almost negligible. This is consistent
with the sound wave v produced with L2-PMM (Fig. le) as
the phase of the signals is fairly well reconstructed (Fig. 1i),
whereas its amplitude is too small.

In the focus-source instance, due to reasons of causality,
theoretically any method can achieve a correct reproduction
of the direction of propagation of ug only in one half-space
defined by {z;};,, where the sound field diverges from
the focus-source position [85]. In the other half-space the
reproduced wave field converges towards the location of the
virtual source. As shown in Figs. 2k-n, the LSS of all the
methods comprise a portion of the converging part of the
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Fig. 2: Focus-source instance. Left panel: (a) uo(fo) (real part), (j) Instance configuration (spatial units in meters). Right
panel rows: Near-field u(fy) (real part); IPD(@); Dietz’s azimuth localization, where the direction of the arrows is the
perceived localization whereas the color is the deviation in degrees of the perceived localization from the desired one;
McKenzie’s coloration (sones). Right panel columns: SWEET-ReLU, NFC-HOA, WEFS, L2-PMM. The shading of the speakers

is proportional to their gain.

sound field. This is possible because the interaural phase of
the binaural sinusoidal signals is correctly recreated at those
points, as shown in Figs. 2f-i. However, we believe that in
more complex scenarios, involving multi-frequency signals
and allowing the listener to turn her head, e.g., considering
a larger O, it would not be possible to recreate correctly
and consistently the localization illusion. As shown in [82,
Chapter 5.6] “for listeners located in the converging part of the
sound field, the perception is unpredictable since the interaural
cues are either contradictory or change in a contradictory
way when the listener moves the head.” Table 1 contains the
fraction of the LSS over {2 for the focus-source instance
considering all the points of the converging half-space as
incorrectly reconstructed.

For the focus-source instance, the LSS and CSS generated
by our method (Figs. 2k, 20) is approximately 10 and 30

(respectively) points larger than those generated by other
methods. The LSS and CSS generated by NFC-HOA (Figs.
21, 2p) is concentrated in a limited region at the diverging
part and around a vertical line that passes through xy. The
LSS generated by WFS (Fig. 2m) is almost contained in
the same vertical line, although the error in the localization
reconstruction is below 15 degrees in a larger area. The
CSS generated by WFS (Fig. 2q) is almost empty as the
resulting u has a large amplitude. This suggests that a focus-
source formulation for WFS needs a factor for amplitude
normalization. The LSS of L2-PMM (Fig. 2n) has almost the
same size as that of NFC-HOA, but its CSS (Fig. 2r) is almost
negligible. This is consistent with the sound wave u produced
with L2-PMM (Fig. 2e) as the phase of the signals is fairly
well reconstructed (Fig. 2i), whereas its amplitude is too small.



The LSS and CSS generated by our method (Figs. 2k, 20)
comprises almost all the divergent part. This highlights one
of the advantages of the greedy approach of SWEET-ReLU:
it is capable to detect the direction of ug over €2 in its first
iterations, to then prioritize the part of 2 where a good fit
to ug can be obtained. This is a possible explanation for the
amplitude mismatch of L2-PMM both in the near-field (Fig.
le) and the focus-source (Fig. 2e) instances: just minimizing
the square of the spatial errors strongly penalizes the spatial
points where the amplitude is very large and difficult to
reconstruct, i.e., near the loudspeakers. Then, L2-PMM finds
a solution where the amplitude error at those points is not too
large, leading to a small overall amplitude. This suggests that
the application of spatial weighting matrix could enhance the
amplitude matching of L?-PMM.

VII. DISCUSSION

Our results show the SWEET-ReLU method yields state-
of-the-art results in standard numerical experiments with our
proof-of-concept implementation. We believe the performance
in these experiments is representative of what we would
observe when using more complex pyscho-acoustic models
for the perceptual dissimilarity and the loudness discomfort.
A key component of our method is the perceptual dissimilarity
D. Although its form in our proof-of-concept implementation
is quite flexible, it does not account for spatialization and
other binaural effects. Finding a model to account for these
effects such that D satisfies (5) is the subject of future
research. It should be noted that, as it is shown in [86], the
overall quality of a spatial sound system can be explained to
70% by coloration or timbral fidelity, which can be partially
characterized by monaural effects, and 30% by spatial fidelity,
which needs to be characterized by binaural effects.

Furthermore, our proof-of-concept experiments show that
even though the perceptual model we use is an extension of
a monaural model using a worst-case approach, it still is able
to perform better than state-of-the-art methods in terms of
localization and coloration. This suggests our implementation
with this model is able to capture correctly some of the spatial
properties of the auditory scene, even though these properties
are not explicitly in the model. This might be explained
because the coloration and localization is strongly dependant
of the amplitude and phase of listener binaural signals, which
is controlled by our implementation of a binaural extension of
an amplitude and phase-sensitive monaural model.

Although our implementation assumes the loudspeakers and
the sources are monopoles, we believe our method can be
readily implemented in real settings with non-trivial sound
sources. For instance, reverberation, different radiation pat-
terns for the loudspeakers, and other time-invariant effects can
be incorporated by modifying the Green function Gy in (2)
and the transfer functions in (4) accordingly.

Even though we have not fully developed a theory for
the convergence of SWEET-ReL U, our numerical experiments
show that the method converges to reasonable results in
practice. Furthermore, our proof-of-concept implementation
avoids any potential issues arising from the discretization of

the models, either due to numerical computation of the Green
function or transfer functions, or to the discretization of the
integral that defines the weighted area. Further analysis about
this point will be the subject of future work.

Finally, our method addresses the two fundamental draw-
backs pointed out in [82, Chapter 1.4] about the sound field
synthesis numerical methods. First, the optimization criteria of
our method is based on perceptual features. Second, our model
is aware of fundamental physical restrictions of the secondary
source setup under consideration such as 2.5-dimensionality
and the spatial discrete property of real-world setups.

VIII. CONCLUSION

In this work, we introduced a theoretical framework for
spatial audio perception that allows the definition of a percep-
tual sweet spot, that is, the region where the spatial auditory
illusion is achieved when approximating one sound wave by
another. Furthermore, we developed a method that finds an
approximating sound wave that maximizes this sweet spot
while guaranteeing no loudness discomfort over a spatial
region of interest. We provided a theoretical analysis of
the method, and an efficient algorithm, the SWEET-ReLU
algorithm, for its numerical implementation. In a proof-of-
concept implementation using monopoles emitting (pseudo)
sinusoidal signals, our method successfully captures some of
the spatial properties of the auditory scene, such as localization
and coloration, even though these properties are not explicitly
in the model. We believe our method is a first step towards a
novel approach for spatial sound with loudspeakers, bridging
the gap between methods based on perceptual principles, and
sound field synthesis methods.

APPENDIX A
THE SWEET METHOD

A. Preliminaries

We let L%(R) be the space of (equivalence classes of)
complex-valued functions that are modulus-square integrable
with respect to the Lebesgue measure on R and for a set S we
let C°(S) be the set of complex-valued continuous functions
defined on S. Let

Xgs = {(u,u") : u® € L*(R), s € {{,7}}
be the space of pairs of signals or ear signals. When endowed
with

lal,, = / it (8) 2 dt + / " (1)) dt
R R

it becomes a complete metric space. Define the set Z :=
Uzeaf{x} x O, and endow it with the subspace topology in
Q x R? (or  x R?). Define the space

W :={u:Z — Xgs : & continuous and bounded}

of spatial distributions of pairs of signals; these are not
equivalence classes. If u € W then w(, 9) € Xgs for every
(x,0) € Z. When endowed with the norm

”’H’HW = ||77’(f6,9)||XEs

(z,0)eZ



the space W is complete. The Fourier transform is an isom-
etry in L*(R). We define F : W — W as Fi(g) =
(W, g)s U(y.g))- 1t can be verified F is an isometry in W. Let
Is C R and let Ymax > 0. The set of admissible audio signals
driving each loudspeaker is

Xas 1= {Oé € L2(R; C) : a|Ig =0, Ha”L2 < meax}

where | denotes restriction; they are bandlimited to Is and
have norm bounded by ~max. The sound waves in (4) belong
to

Wg = {]:_1 (ZakH]:, ZakH£> T € XAS}-
k=1 k=1

To quantify the area of the sweet spot in (7) we use a finite
Borel measure p on 2 [87, Section 1.2]; we usually suppose p
is absolutely continuous with respect to the Lebesgue measure
or atomic. If u is the pair of signals generated by the array,
then p(S(@)) is the weighted area of the sweet spot S(@).
We consider the space L;°(f2) of (equivalence classes of)
real-valued Borel measurable functions that are bounded -
a.e. [87, Section 3.3]. Frequently used operations, such as
the sum, supremum or infimum of functions, the integral, and
inequalities, are well-defined for such equivalence classes of
measurable functions. If v € L7°(Q2) then p({z € Q: v(z) >
0} is independent of the representative used.

Assumption 1. (i) Q is compact. (ii) ©, # @ for every
x € €. (i) Z is compact. (iv) Ig is compact. (v) The
functions H ,f, Hj are continuous and bounded on I x Z. (vi)
The dissimilarity map D : W x W — C°(Z) is continuous
and convex on its first argument. (vii) The discomfort map
L:W — C°(Z) is continuous and convex. (viii) &g € W.

The model proposed in Section II-B is well-defined.

Proposition 1. Under Assumption 1 the following assertions
are true: (i) The set Wg is convex and compact in W. (ii)
The map Tp : Ws — LiP(Q) is continuous, and for x €
the map 4 — Tpu(x) in (6) is convex. (iii) The map (10 S :
W — R is well-defined, that is, its values do not depend on
the choice of representative of Tpu. (iv) The set P in (8) is
convex and closed in W.

We defer the proof to Appendix A-H. Although the feasible
set for (Py) is compact, the objective depends on the properties
of the set-valued function v = S(u). As studying these
properties and minimizing p o S is potentially challenging,
we propose an approximation to (P,) that can be analyzed
and solved with standard methods.

B. The layer-cake representation

We approximate the area of S(u) using the layer-cake
representation.

Assumption 2. ¢ : R — R is absolutely continuous, bounded,
non-negative and such that ¢(¢) = 0 for t < 0 and ||| = 1.

For € > 0 let . denote ¢.(t) = p(t/c)/c and define

o) = [ ; pels) ds.

Since ®. is continuous, the composition ¢, ov is well-defined
as an element in Ly (€2) for any v € Lg°(€2). Similarly,

A(v) ::/Q<I>E(v(x))d,u(x).

is well-defined for any v € L7 (©). By Assumption 2 . is
non-decreasing, whence v < vq implies A.(v1) < Ac(vg),
i.e., Ac is non-decreasing.

Proposition 2. Under Assumption 2, for every v € Lg°(€2)
we have

limg g Ac(v) = p({z € Q: v (z) > 0}).

Proof of Proposition 2. Let t > 0, let v’ be a representative,
and let {&,, },en be non-negative and monotone decreasing to
zero. Define V;,, := {z € Q : v'(x) > e,t} and note that
Vin € Vinyr. Define V= {J, oo Vi = {z € Q:0'(2) >
0} and h,,(t) = p(t)p(Vi,n). Note h,, is measurable for every
n as t — (V4 ) is monotone. Then h,(t) T o(t)u(V) as
n — oo by continuity from below [87, Proposition 1.2.5].
Since 2 is bounded, v € L/,(Q2) and v is absolutely integrable.
By Fubini’s theorem,

v’ ()
A, (v) = /Q /_ @e, (t)dtdu(x)
:/%n(t)/ X{zeQuv/ ()>t} (t, T) du(z)dt
R Q
= /]R @e, ()u({z € Q0 (x) > t})dt

— [ eVendds 2 (a0 (0) > 0)

where we used the change of variables s = t/e, and
the monotone convergence theorem [87, Theorem 2.4.1]. As
{&n }nen is arbitrary, the claim follows. O

For 4 € Wg and ¢ > 0 sufficiently small we have by
Propositions 1 and 2 that

A(Tpi) = / B, (Tpia(x)) du(x)
~ (e € Q' Toa(z) > 0)) = p(Q) — u(S(@).

Consequently, 1(S()) ~ p(Q)— A (Tpu) and for every fixed
@ € Wgs we can approximate ;(S(a)) by A:(Tpu).

C. The variational problem

We propose to solve the surrogate problem

(p.) minimize A, (Tpu)

aeWsnP (14)

Proposition 3. Suppose Assumptions 1 and 2 hold. The
function A. : L7°(Q) — R is continuous, and (P:) has at
least one minimizer.

Proof of Proposition 3. Let § > 0, let vo,v € L5 (Q2) be such
that [[v — vo| e < 6/2, and let v" and v{, be representatives.
There exists Q* C Q with p(2\ Q*) = 0 such that
[v'(z) — vy(x)| < §/2 for € Q*. Since ¢, is non-negative



and bounded on the interval [—||vo ||z —3/2, [lvollre +3/2],
for any x € Q* we have that

vy (z)+6/2

@.((@) ~ @) < [ i<,

vy (z)—06/2
where ¢, > 0 depends only on .. As the bound is inde-
pendent of the choice of v', v(), |Az(v) — Ac(vo)| < ¢ ()0
whence A, is continuous. The existence of solutions follows
from the compactness of Wg N P. O

D. DC Formulation

To solve (P:) we first rewrite it equivalently as

minimize A, (v)
aEWgNP
VELSS(Q)

(P:) (15)

subject to Tpu < v.

We interpret the auxiliary variable v as an overestimate of the
auditory illusion map over 2.

Proposition 4. Under Assumptions 1 and 2, if u* is an optimal
solution to (P.) then (u*,Tpu*) is an optimal solution to

(Py). In particular, (P.) has a solution.

Proof of Proposition 4. Let p., p. be the optimal values for
(P.) and (P.) respectively, where p. is finite as (P.) is
feasible and A, > 0. On one hand, if %, is an optimal solution
to (P.), which exists by Proposition 3, then (u.,Tp@.) is
feasible for (]35). Hence, p. < pe. On the other, if (@,v)
feasible for (P.) then % is feasible for (P.). Since A. is
monotone, pe < A (u) < A:(v) whence p. < p.. We
conclude p. = p. and (i, Tpi.) is an optimal solution to

(P:). O

Under suitable assumptions, the objective function in (]55)
is the difference of convex functions.

Assumption 3. In addition to Assumptions 1 and 2, there
exists ¢ : R — R absolutely continuous, non-decreasing and
such that p*(t) = 0 for t < 0 and that p~ := T —p is a
non-decreasing function.

We let ot (z) = ¢t (x/c)/e and we define

(1) = / ot (3)ds.

Similarly, let o= = ¢ — ¢ and D (t) = ®F(t) — P-(t). By
construction, ®, = <I>;r — ®_. Hence, we can decompose A
as A= AT — AZ where

AF(v) = / B, (v(x)) du(z)

and A7 is defined similarly.

Proposition 5. Under Assumption 3, the functionals AT, AZ :
L2 (Q2) — R are convex and continuous.

Proof of Proposition 5. By construction, both ®F and &7
have derivatives ¢ and o respectively, almost everywhere
which are both non-decreasing, hence monotone [88, Propo-
sition 17.10]. Therefore ®F and ®_ are convex. With this,

and the linearity and monotonicity of the integral, AT and
A_ are convex. Moreover, they are continuous as the proof of
Proposition 3 holds mutatis mutandis. O

We conclude that (F;) is a Difference-of-Convex (DC) pro-
gram [89], [90]. The Convex-Concave Procedure (CCCP) [91]
is an efficient method to attempt to find a solution to this class
of optimization problems. The CCCP is an iterative method
that uses an affine majorant for the concave part, e.g., using
subgradients, to majorize the objective function in (15) by a
convex function.

Let vg € Ly (€2) and let L7°(22)* be the topological dual
of L7°(2). We say g € LiP(Q)* is a subgradient of AZ at vg
if

Voe Ly (Q): A (v) > AZ (vo) + g(v — vo).

The subdifferential 0AZ (vg) is the collection of all subgradi-
ents at vg. Since AZ : L7°(Q2) — R is continuous and convex,
its subdifferential is non-empty at vy [92, Proposition 2.36].
We can use the convex majorizer

Ac(v) = AT (v) — AZ (v) < AT (v) — AZ (v0) — guo (v — v0)
where g, € L°(2)* and solve
minimize A (v) — A2 (v0) = guo (v = v0)

(Pro)

vELS(Q)
subject to Tpu < v.

Proposition 6. Under Assumption 3, for € > 0 and vy €

L2 (S2) (Pev,) has at least one optimal solution.

We defer the proof to Appendix A-I. In our method we
make an explicit choice of a subgradient.

Proposition 7. Under Assumption 3, for vy € LEO(Q) the
linear application

g (0) 1= / o7 (wo(@))o() dyu(z)

is well-defined for v € L° (), continuous and is a subgradi-
ent for AZ at vy.

(16)

Proof of Proposition 7. Since vg € L7°(2) and ¢ is non-
decreasing, we have ¢_ ovg € LY () and, as 2 is compact,
we also have ¢ ovg € L}, (). Hence, gy, is well-defined and
9, € LY (Q)*. By the definition of & and Assumption 3,
‘1)5_(!‘,) > (I)E_(to) + (pa_(to)(t — to) for all ¢t,tg € R. This
implies

[ o @) dute) > | @ (wo(a)) due)
Q

Q
+ [ e @)@ = i) duo)
O
Given (up,v9) the CCCP constructs a sequence

{(@g,vE)}ken where (Ugy1,vg+1) is the optimal solution to

(P...,.). To our knowledge, the best theoretical guarantees
for finite-dimensional problems show that this sequence
converges to a stationary point of (P.) [89, Theorem 3],
whereas we are not aware of similar guarantees for infinite-

dimensional problems. However, {uy}ren is a sequence in



Wys and, as Wy is compact by Proposition 1, we can extract
a subsequence {uy(y) }een With limit @*. If {pj}ren is the
sequence of optimal values to each (P ,, ) then

AE(TDQ*) = lim inf AE(TDﬁk(Z))
< hm 1an (V(ry) < liminf py
k—o0

by the continuity of Tp, A. and the fact that A. is non-
decreasing. The optimal values are a conservative estimate of
Ac(Tpu*). Our numerical results show the solutions found
this way performs well in practice. By iteratively solving (ﬁg)
with CCCP for increasingly smaller values of € we expect to
obtain an increasingly accurate approximation to a solution
to (Pp). We call this general method Sparse WEighted Error
iTeration (SWEET). As we will see, SWEET-ReLU is an
specific instance of it.

E. SWEET-ReLU

When ¢ is the indicator function of [0,1] the function ®
becomes the difference of two Rectified Linear Units (ReLUs).
In this case, p. = 5_1X[07€]. The decomposition &, = &F —
&~ becomes

ol (v) =2y /e and O (z)=(z—¢)4/e

and the subgradient (16) becomes
1
g0 =7 [ o(a) dp().
€ J{zeQo(z)>e}

Let Qc 4, = {z € Q : vo(x) < e}. Since both A (vo
Gue (Vo) in (P: ,,) are constant, it suffices to compute

AZ) = g(0) = £ [ @) duta) =7 [ v duta)

) and

£,v0

1
-2 / e dute)
+z / (ol dute)

where we used the fact that ¢y —t = (—t),.. The second term is
non-negative, and becomes positive only when v takes negative
values. As Tpu < v in (}55,1,0) we can choose v arbitrarily
large on €22, to decrease the objective value and to neglect
the second integral. Then, only the first term contributes to the
objective in (P ,,) and we obtain

| vt duta)

€,v0

minimize
aLEWgNP
) VELFR(Q)

(Ps,vo

As the positive-part function is monotone, we can eliminate v
to obtain

minimize

(PE’”" ) aEWsNP

/ (Tpa(e))+ du(z)
Q

£,v0

which is precisely the problem (PRLU) when vy = 0. It

depends on vy only through €. ,,. To construct an optimal
solution (@, vg) from the optimal solution s we proceed

as follows: by choosing vk|QMk_1 = Tpukla and

= max{e, Tpug|oc - } we obtain

: TDﬁz(.’E) < E}

S Vk—1

vklee,,

Qe = {x c: v;c(x) <el={r €0,
= Qs,vk,l N {lE eQ: TDfL;(x) < {—:}7

yielding the method as presented in Section III.

F A class of monaural dissimilarity maps

We introduce a class of dissimilarity metrics based on time-
variant filters satisfying Assumption 1.

Lemma 1. Let K : Z — L?*(R?) be continuous with

sup sup / (K woy (68| + | K w8 8)])
(z,0)eZ teR JR

finite. Define for (z,0) € Z, w € L*(R)

:/K(Lg)(t,t’)w(t')dt’.
Then A( ) is linear, A

Al oyw(t)

A{< o)W is continuous.

Proof. The linearity follows from the integral representation.
From Young’s inequality for integral operators [93, Theo-
rem 0.3.1]

/Kw) (.t Yw(t') dt’

whence (z,0) — A, g)w is bounded. By the Cauchy-Schwarz
inequality

dt < O (x,0)*||wl[7

A oyw — A pywl|7e
<2 / / (K oy (t.8) — K gy (6.1 () di
R R

+2

2
dt

2
dt

[ [ Bt/ () = we) ar

<l [[ K (tt) - Koyttt

+ 20k (2,0) v — wl|Za,

where continuity follows from hypothesis. O

Proposition 8. Let ug € W and let { By}, be as in (10)
where {Kp, },." | satisfy the hypotheses of Lemma 1. Let U :
R’Y* — R be convex and monotone increasing on each one of
its arguments. For s € {{,r}

D‘(ga,ao)(fﬂve) = ‘I’(Bl(ufx,e) - uS,(w,@))?
© Bnb (ufmﬁ) - ug,(w,é)))
is a dissimilarity satisfying Assumption 1. In particular, so is
Do) (z,0) = maX{Df (x 0),D qu (x,9)}.
Proof. For simplicity, we prove the result for 4o = 0. It can

be verified that Bru(, 4 = ||A ug,, 0)||L2 By Lemma 1, a
function of the form

Dizo)(@,0) =

R

KBn
V(A o 1A 0y

is continuous on Z. Since A( is linear on u( ) and
the norm is convex, the convex1ty of D* follows from the
assumptions on . O

KBI

ollzz,. U(y0)llL2)

By



G. Discussion

Although Proposition 2 implies A. converges pointwise to
wo S, this is not sufficient to ensure a global minimizer for
(P.) converges to a global minimizer for (FPp). A future line
of work consists on leveraging I'-convergence to answer this
question. Related to it is the choice of ¢. Although we have
not studied extensively the effect of this choice, we believe it
affects the quality of the approximation to the area of the sweet
spot. This is another interesting future line of work. Finally, the
method allows for several choices of p. Therefore, the results
presented apply both for the continuous case, e.g., when p is
the Lebesgue measure, and the discrete case, e.g., when p is
discrete.

H. Proof of Proposition 1

Proof of (i). It is easy to verify Wy is convex. Since Z is
a separable metric space, by Arzela-Ascoli’s theorem [94,
Theorem 11.28] to prove Wy is compact it suffices to show
it is bounded and equicontinuous. By Assumption 1,

N

ity ol2s <na S / @ (FIHE(fo,0)2 df
k=1 S

, .
S nS’YmaX : Sup
1 (fx.0)ElsxZ

|H;(f,@,0)]?

and (7,0) + wu(yg) is uniformly bounded. Thus, Wg is
bounded. Let ¢ > 0. Since H i s continuous on the compact
set Is x Z, there is 6 > 0 such that for any |z —y|, [0 —¢| < ¢
and f € Ig we have that |ﬁ§(f,x,9) — f],i(f,y,¢)| <
g/2n2~2... Then,

s 0y = Uyl 22

<03 [ @ . 0) ~ BT ) < e
k=1v1s

whence (z,0) — @(,,9) is continuous. Since § is independent
of u, we conclude Wy is equicontinuous.

Proof of (ii). Let u,ug € W. The function D(ygz,) is
continuous on the compact set Z and thus bounded. Hence,
Tpu is bounded and we can associate to it its equivalence
class in L7°(2). Let ¢ > 0. There exists 6 > 0 such
that |[vf — |2, |0" — u"||z2 < & implies |D(g q0)(,0) —
D (a,a4)(z,0)| < /2. This implies |Tpv(x) — Tpu(x)| < €
whence Tp is continuous. By Assumption 1, the map D is
convex on its first argument. The conclusion follows from
the fact that the pointwise supremum of convex functions is
convex.

Proof of (iii). For Tpu € L7°(§2) we can choose representa-
tives Tpu', Tpu' of Tpu. Hence, the set {x € Q : Tpu'(x) =
Tpu'(x)} has p-measure zero, from where the conclusion
follows.

Proof of (iv). From the same arguments used for (ii) the
map Tr, : W — L;2(Q) is continuous. As {v € L7°(Q) :
vv > 0 p-a.e.} is open, then P¢ = {u € W : Tpu > 0 p-ae.}
is open, whence P is closed.

1. Proof of Proposition 6

Let v, be a representative and define
fz,0) = ®F(a) = ¢ (vy(@))er

This is a Carathéodory map [95, Definition 8.2.7]. By Theo-
rem 8.2.11 in [95] there exists v'* measurable such that

o (v (@) — ¢l (v ()0 (2) = nf{f(z,0) : &« € R}.

By Assumption 3, ¢ (vj(z)) > 0 and 0 < v"*(z) < v{(x)
whence v'* is bounded p-a.e. Let v* € L;°(€2) be its equiva-
lence class. Let {(@, vg) }nen be a minimizing sequence. As
WsNP is compact, without loss of generality we may assume
{tig}ren has a limit 4. Let Tp@), be a representative and
let wy, := max(v'*, Tpuj},). Then wj, is p-a.e. bounded. Let
wy, € LyP(2) denote its equivalence class. By construction,

f@,v(2) 2 f(z, Tpuy(z)) =2 f(z, Tpv"™(x))
for any representative v},. Therefore
lim inf(AL (vg) — go, (V&) > liminf(AL (wi,) — gu, (W)
k—o0 k—o0

whence { (@, wg)}ren is also minimizing. By continuity of

Tp we conclude wy, — max{v*, Tplis} whence (P: ,,) has
a solution.
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