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ABSTRACT

Nuclear magnetic resonance (NMR) spectroscopy is rou-
tinely used to study the properties of matter. Therefore, differ-
ent materials can be classified according to their NMR spec-
tra. However, the NMR spectra cannot be observed directly,
and only the NMR signal, which is a sum of complex ex-
ponentials, is directly observable in practice. A popular ap-
proach to recover the spectrum is to perform harmonic re-
trieval, i.e., to reconstruct exactly the spectrum from the NMR
signal. However, even when this approach fails, the spectrum
might still be classified accurately. In this work, we model
the spectrum as an atomic measure to study the performance
of classifying the spectrum from the NMR signal, and to de-
termine how it degrades in the presence of additive noise and
changes in field intensity. Although we focus on NMR sig-
nals, our results are broadly applicable to sum-of-exponential
signals. We show numerical results illustrating our claims.

Index Terms— Sum of exponentials, harmonic signals,
nuclear magnetic resonance spectroscopy, magnetic reso-
nance spectroscopy, signal classification, end-to-end classifi-
cation, harmonic retrieval.

1. INTRODUCTION

Nuclear magnetic resonance (NMR) spectroscopy is a widely
used technique to investigate dynamically the physical, chem-
ical and biological properties of matter [1]. In an NMR ex-
periment a sample is plunged into an intense external mag-
netic field, and excited with radiofrequency electromagnetic
waves. The signal generated by this experiment, called free
induction decay or simply the NMR signal, corresponds to a
sum-of-exponentials

u(t) =
∑

k
cke

λkt (1)

where the complex exponents {λk} determine the oscil-
lation frequency and the rate of decay of each term, and the
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weights {ck} determine their amplitude and phase. The imag-
inary part of the exponents determines the NMR spectrum of
the sample, and it reveals information about its constitutive
materials. For this reason, NMR spectroscopy is routinely
used in a broad range of applications. For example, NMR
spectroscopy has been shown to be useful in studying liver
diseases by quantifying the relative concentration of fatty
acids [2].

As the NMR spectrum contains detailed information
about the composition of a sample, it can reveal whether the
sample exhibits a specific set of properties. In other words,
we can classify the sample into different categories using its
NMR spectrum. For example, the NMR spectrum has the
potential to reveal early stages of liver disease [2, 3], allow-
ing for its early diagnosis. However, the spectrum cannot
be measured directly, but only indirectly through the NMR
signal (1) measured in an experiment.

For this reason, a traditional approach to classify the spec-
trum is to perform harmonic retrieval (HR), that is, to attempt
to recover exactly the exponents and the weights from the
signal u to then classify these values. There is an extensive
literature devoted to the development and implementation of
methods for HR, such as Prony-like methods [4], matrix pen-
cil methods [5], MUSIC [6], total variation (TV) minimiza-
tion methods [7], atomic norm minimization methods [8], pa-
rameter estimation using optimization [9] and, more recently,
deep learning methods [10]. Although these methods work
well in practice, there are limits to the amount of information
that can be retrieved. For instance, when two exponents are
too close to each other, the sampling rate required to accu-
rately recover both increases substantially. Furthermore, the
methods themselves often become unstable in the presence of
noise [11].

Since the NMR signal encodes information about the sam-
ple, it may still be possible to classify the spectrum directly
from the NMR signal [12] even when HR may fail. This strat-
egy has become increasingly popular due to the advent of end-
to-end Machine Learning (ML) [13] for classifying NMR sig-
nals [14], and, from a theoretical standpoint, due to the fact
that the conditions for exact classification of the NMR spec-
trum should be less constraining than those for which HR is
successful. However, there are open questions regarding the
performance and the limitations of these strategies, which, as



is the case for HR, are closely related to the structure of the
NMR spectrum. Furthermore, the response may be corrupted
by additive noise, impacting the performance of any classifi-
cation method on the NMR signal.

In this work we assume that the classes of NMR spectra
are disjoint, and we develop a model based on atomic mea-
sures in the complex plane to determine when the NMR spec-
trum can be classified only from its associated NMR signal.
In particular, we are interested in the effect of the field in-
tensity, which impacts the decay of the signal, on the classi-
fication performance. Furthermore, we study the impact of
additive noise on the NMR signal in the classification. We
present experiments to illustrate our theoretical results.

2. MATHEMATICAL MODEL

2.1. The spectrum

We represent the spectrum {(ck, λk)} of a sample as a com-
plex measure on C

µ =
∑p

k=1
ckδλk

(2)

where {λk}pk=1 and {ck}pk=1 are the exponents and weights
of the signal in (1) and p is finite, but otherwise arbitrary. Re-
mark that this is the measure associated to the NMR signal
in (1) and is different from the NMR spectrum, which typi-
cally refers only to {(|ck|, Im(λk)}.

Since the NMR signal decays in time, the real part of
the exponents is negative. Hence, we assume that there ex-
ist γ−, γ+ ∈ R+ such that γ− ≤ −Re(λk) ≤ γ+ for each k.
These constants bound the minimum and maximum decaying
rates of the components of the NMR signal. Therefore, we
define

Sp :=
{∑p

k=1
ckδλk

: γ− ≤ −Re(λk) ≤ γ+, ck ∈ C
}
.

The spectrum of a system is then represented by a measure in
Sp. The magnitude is quantified by its total variation

∥µ∥TV = sup
f∈C0(C): |f |≤1

∫
C
f(z)dµ(z).

We assume that all the measures in this work have finite total
variation. Observe that when the measure is atomic as in (2)
then ∥µ∥TV =

∑p
k=1 |ck|.

2.2. The NMR signal

From (2) we can represent the NMR signal in (1) as the inte-
gral transform

u(t) = Sµ(t) :=

∫
C
eλt dµ(λ) (3)

of the measure µ. Hence, we are led to a linear relation be-
tween u and µ. Furthermore, when µ ∈ Sp the NMR signal
has finite energy. From [15, Proposition 4.2.5]

|Sµ(t)| ≤
∑p

k=1
|ck|eRe(λk)t ≤ e−γ−t∥µ∥TV

we deduce that Sµ ∈ L2(R+) with

∥Sµ∥L2 ≤ ∥µ∥TV/
√
2γ−. (4)

Typically, the NMR signal is corrupted by noise. Hence, we
also consider the additive noise model

v := u+ w = Sµ+ w (5)

where w ∈ L2(R+) represents an unknown perturbation with
L2-norm bounded by a known value σ > 0.

2.3. Classes of spectra

We assume that the spectra in Sp associated to the properties
of interest can be grouped in classes O1, . . . , ON ⊂ Sp. Usu-
ally these classes are known, as they are determined by the
properties being looked for in a sample, or by other consider-
ations. A key assumption that we will make is that there is a
fixed, but unknown, relation between the real and the imagi-
nary part of the exponents of all the spectra in O1∪ . . .∪ON .
Specifically, we suppose that there exists a function ρ : R →
R such that γ− ≤ −ρ ≤ γ+ and λk = −ρ(ωk) + iωk for any
µ ∈ O1 ∪ . . . ∪ ON . In practice, this implies that the rate of
decay of the terms in (1) depends only on the oscillation fre-
quency. Hence, the classes Oi are differentiated only by their
frequencies, that is, by their NMR spectra.

2.4. Classification of spectra

It is natural to assume that the classes {Oi}Ni=1 are disjoint,
so that no spectrum belongs to two distinct classes; we will
further assume that if we measure the distance between them

κTV(Oi, Oj) := inf{∥µ− ν∥TV : µ ∈ Oi, ν ∈ Oj}

then κTV(Oi, Oj) > 0 when i ̸= j. Although this implies
that the spectra can be perfectly classified by some classifier,
in practice the spectra cannot be observed directly. In con-
trast, the NMR signal associated to each spectrum can be ob-
served. The set of NMR signals generated by the spectra in
Oi is the set SOi. We measure the distance between them as

κL2(SOi, SOj) := inf{∥Sµ− Sν∥L2 : µ ∈ Oi, ν ∈ Oj}.

If κL2(SOi, SOj) > 0 when i ̸= j then any state can be
perfectly classified from its NMR signal by some classifier.
However, the map S may substantially reduce this distance
in comparison to κTV(Oi, Oj). This leads to an increased
sensitivity to noise. The noise model (5) leads us to analyze

inf
∥w∥L2≤σ, ∥w′∥L2≤σ

κL2(SOi + w, SOj + w′)



which might become arbitrarily small or zero. Hence, our
goal is to compare these distances to κTV(Oi, Oj) and to find
conditions for perfect classification.

3. CLASSIFICATION OF STATES FROM NMR
SIGNALS

The distortion introduced by S is quantified by constants
c−, c+ > 0 such that

c−∥µ∥TV ≤ ∥Sµ∥L2 ≤ c+∥µ∥TV (6)

for any µ ∈ Sp. The arguments in Section 2.2 allow us to use
c+ = 1/

√
2γ−. To find a suitable c− note that

∥Sµ∥2L2 =

∫ ∞

0

∣∣∣∑p

k=1
cke

λkt
∣∣∣2 dt = c∗G(µ)c

where G(µ) is the symmetric positive semidefinite matrix
with entries

Gk,ℓ(µ) =

∫ ∞

0

e(λ
∗
k+λℓ)tdt = −(λ∗

k + λℓ)
−1 (7)

and c is the vector of weights {ck}pk=1. Hence, c− can be
bounded as long as we can bound the smallest eigenvalue of
this matrix. Let

Rp :=

⌈
p− 1

2

⌉
, Hp := 2

∑Rp

m=1
m−1.

The main result of this work is the following. We defer its
proof to Section 7.

Theorem 3.1. Suppose that p ≥ 2 and let µ ∈ Sp. If there
exists ∆ > 0 such that

| Im(λk − λℓ)| ≥ ∆ > 2
√
H2

pγ
2
+ − p−2(γ+ + γ−)2 (8)

then (6) holds with c− =
√
η/p for

η =
1

2γ+

− HpRp√
(γ+ + γ−)2 +∆2R2

p

.

Notice that if γ+ = γ− and p = 2 then the lower bound
in (8) is equal to 0. However, the bound becomes more re-
strictive as p or the range of uncertainty of the decay γ+ − γ−

increases. Theorem 3.1 leads to a bound on the distortion in-
troduced by the map S.

Theorem 3.2. If every µ ∈ Oi −Oj satisfy (8) then√
η

2p
≤ κL2(SOi, SOj)

κTV(Oi, Oj)
≤

√
1

2γ+

.

Finally, from Theorem 3.2 follows a bound on the noise
level σ for which we may still have perfect classification.

Corollary 3.1. If every µ ∈ Oi −Oj satisfy (8) then

σ <
√
η/4p κTV(Oi, Oj)

then there exists some exact classifier for the spectra using
their NMR signal.

4. NUMERICAL EXPERIMENTS

To illustrate how representative are the bounds in practical ap-
plications, we use 1H NMR spectroscopy data from fatty acid
methyl ester (FAME) samples obtained using a 9.4 T Bruker
Avance spectrometer. The data were acquired with the proto-
col Zg30 (30 degrees excitation pulse). For each NMR signal
we measured a sample of fatty acids (FA) extracted from the
liver of 12 mice with nonalcoholic steatohepatitis (NASH),
and from 12 healthy mice from a control group.

The class of NMR signals from healthy mice is C =
{u1, . . . , u12} whereas the class for mice with NASH is N =
{u13, . . . , u24}. Fig. 1a shows the spectrum of u1 and u13.
Since the noise level is very low, we assume that for each k
we have uk = Sµk for some measure µk ∈ Sp. We de-
fine OC and ON accordingly. By inspection, we estimate
p = 9, ∆ = 100 Hz, and γ0 = 3.36529 Hz as the aver-
age decay rate. We set γ− = 0.9γ0 and γ+ = 1.1γ0. That
is, we assume that the decay rate of each of each term of the
sum (1) is contained in [γ−, γ+]. For γ ∈ R+ we synthetize
the NMR signals uγ

k(t) = e−γtuk(t) and define the classes
Cγ = {uγ

1 , . . . , u
γ
12} and Nγ = {uγ

13, . . . , u
γ
24}. By con-

struction, uγ
k = Sµγ

k , where µγ
k is equal to µk with its support

shifted by −γ on the complex plane; we define Oγ
C and Oγ

N

accordingly. Thus, the latter satisfy the same separation con-
dition as OC and ON .

We test the bounds of Theorem 3.2 by computing E(γ) =
κL2(Cγ , Nγ)/κTV(OC , ON ), U(γ) =

√
1/2(γ+ + γ) and

L(γ) =
√

η(γ)/2p, where

η(γ) =
1

2(γ+ + γ)
− Hp⌈(p− 1)/2⌉√

(γ+ + γ− + 2γ)2 +∆2⌈(p− 1)/2⌉2
.

For this we consider γ ∈ [γ0, γ1], where γ1 = 3.2γ0. In this
experiment, we estimate

κTV(OC , ON ) =
√

2/9γ0 κL2(C,N).

The results can be seen in Fig. 1b.

5. DISCUSSION

Theorem 3.2 shows that classification robustness to additive
noise degrades inversely proportional to the square root of the
decay rates. This quantifies the impact of the well known fact
that a large decay rate reduces the effective interval of obser-
vation for each one of the components of the NMR signal (1),
making it challenging to distinguish low frequencies unless
they are well separated.

Our results show the validity of the bounds in an experi-
mental setting. While our upper bound always hold, our lower
bound seem hold on a limited but practical range of decay
rates. It is limited since the bound in (8) is increasing on the
maximum decay rate γ+ and when γ− ≪ 1 the leading term
is ≈ 2(Hp − p−2)1/2γ+; for p = 10 we have ≈ 20γ+. On



(a) Spectrum of u1 ∈ C and u13 ∈ N .

(b) Theoretical bounds and experimental results.

Fig. 1: Experimental results

the other side, since the decay rate in NMR spectroscopy de-
pends on the magnetic field, the range of validity of our bound
is practical in that it reflects a potential reduction of the exter-
nal field from 9.4 T to 3 T. Consequently, the NMR spectra
can be classified from NMR signals at 9.4 T and 3 T.

6. CONCLUSIONS

We develop a model based on atomic measures in the com-
plex plane that allows us to study when the NMR spectrum
can be classified only from its associated NMR signal. Our
theoretical results provide a frequency separation condition
that is inversely proportional to the decay rate, i.e. the inten-
sity of the external magnetic field, which ensure that the NMR
spectrum can be classified directly from its associated NMR
signal as long as the SNR of the NMR signal is proportional
to the square root of this external field. Our experiments show
that the bounds we obtained are valid over a range of decay
rates of the NMR signal that may represent a large factor of
variation of the system parameters, e.g. external field.

7. PROOF OF MAIN RESULTS

Proof of Theorem 3.1. The entries in (7) depend only on
λ1, . . . , λp. By definition they are all distinct. Write λk =
−ak+ ibk with ak ≥ 0. Then, by Lemma 7.1 and Lemma 7.2
we have

(−2Re(λk))
−1 −

∑
ℓ ̸=k

|λ∗
k + λℓ|−1

= (2ak)
−1 −

∑
ℓ ̸=k

√
(ak + aℓ)2 + (bk − bℓ)2

−1

≥ (2ak)
−1 −

∑
ℓ ̸=k

√
(ak + γ−)2 + (bk − bℓ)2

−1

≥ (2ak)
−1 − 2

∑⌈ p−1
2 ⌉

m=1

√
(ak + γ−)2 + (m∆)2

−1

≥ (2ak)
−1 −Hp

√(
ak + γ−

⌈(p− 1)/2⌉

)2

+∆2

−1

≥ (2γ+)
−1 −Hp

√(
γ+ + γ−

⌈(p− 1)/2⌉

)2

+∆2

−1

.

Hence, G(µ) is diagonally dominant. Its smallest eigenvalue
is bounded below by η uniformly in the weights of µ. It fol-
lows from the hypothesis that η > 0. Thus,

c⊤G(µ)c ≥ η∥c∥22 ≥ (η/p)∥c∥21 = (η/p)∥µ∥2TV.

Proof of Theorem 3.2. Let Oi,j = Oi×Oj . If µ, ν ∈ Sp then
µ− ν ∈ S2p. From (4) and Theorem 3.1 we have that

(η/
√
2p)κTV(Oi, Oj)

= inf{(η/
√
2p)∥µ− ν∥TV : (µ, ν) ∈ Oi,j}

≤ inf{∥S(µ− ν)∥L2 : (µ, ν) ∈ Oi,j}

≤ inf{∥µ− ν∥TV : (µ, ν) ∈ Oi,j}/
√

2γ−

= κTV(Oi, Oj)/
√
2γ−.

We present the following auxiliary lemmas. We omit their
proof for brevity.

Lemma 7.1. Let f : R+ → R be decreasing, let ∆ ≥ 0, and
consider the problem

max
t1,...,tp

∑p

k=1
f(|tk|) s.t. |tk| ≥ ∆, |tk − tℓ| ≥ ∆.

An optimal solution is given by tk = (−1)k⌈k/2⌉∆ and the
optimal value is bounded from above by

2
∑⌈ p−1

2 ⌉
k=1

f(k∆).

Lemma 7.2. Let b ≥ 1, c, d ∈ R. Define f : R+ → R as

f(t) = t−1 − b
√
(t+ c)2 + d2

−1
.

Then f ′(t) ≤ 0 if f(t) ≥ 0.
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