Active set identification and rapid convergence for degenerate
primal-dual problems

Mateo Diaz* Pedro Izquierdo Lehmann* Haihao Luf Jinwen Yang?

Abstract

Primal-dual methods for solving convex optimization problems with functional constraints
often exhibit a distinct two-stage behavior. Initially, they converge towards a solution at a
sublinear rate. Then, after a certain point, the method identifies the active set—in the sense that
all subsequent iterates share the same active constraints—and the convergence enters a faster
local linear regime. Theory characterizing this phenomenon spans over three decades. However,
most existing work only guarantees eventual identification of the active set and relies heavily on
nondegeneracy conditions, such as strict complementarity, which often fail to hold in practice.
We characterize mild conditions on the problem geometry and the algorithm under which this
phenomenon provably occurs. Our guarantees are entirely nonasymptotic and, importantly, do
not rely on strict complementarity. Our framework encompasses several widely-used algorithms,
including the proximal point method, the primal-dual hybrid gradient method, the alternating
direction method of multipliers, and the extragradient method.

1 Introduction

We study convex optimization problems of the form
xrglllr% f(x) s.t. gj(z) <0 forall j € {1,...,m}, (1)
where f: R"™ — R and g;: R® — R are convex functions. Primal-dual first-order methods,
which simultaneously solve (1) and its dual, often display a marked two-stage behavior: initially,
their iterates converge sublinearly towards a solution; then, after a finite number of iterations,
the iterates identify the set of active constraints and their convergence switches to linear. This
phenomenon is ubiquitous in practice, and it is exhibited by several first-order methods. To illustrate
this phenomenon, Figure 1 shows the performance of three popular algorithms—the primal-dual
hybrid gradient method (PDHG), the alternating direction method of multipliers (ADMM), and the
extragradient method (EGM)—on a simple two-dimensional quadratic program with four constraints;
see details in Appendix A.
There is extensive work on this phenomenon, from algorithm-specific analyses [30, 36, 37, 38, 39] to
geometric accounts of the structure that drives it for broad families of algorithms [8, 23, 31, 32, 34, 56].
Although technical, the core idea is simple and directly relevant here, so we briefly recall it. It is
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convenient to reformulate (1) as an equivalent minimax problem

Join, max L(z,y)  with  L(2,y) = f(z) -y (y) + 4 G() (2)

here tgrm denotes the indicator of the nonnegative orthant and G: R™ — R™ is the map with ith
component (G(x)); = gi(x). In turn, a pair z* = (2*,y*) solves (2) if, and only if,
0z L(2)
dy (—E(Z))] ’
where 0,L and Jy(—L) denote convex subdifferentials in # and y, respectively. Suppose we had

an iterative algorithm that generates a sequence z¥ = (2, y*) for which there exists a sequence of
saddle subdifferentials ¢* € F(z*) satisfying

0 e F(z¥) with  F(z) := [

(25, &%) = (2*,0) as k — oc. (3)
Many methods satisfy this requirement, including the prox- : -
imal point method (PPM), PDHG, ADMM, and EGM. 0%y = © —=— ADMM
Under strict complementarity, the primal-dual space de- 10-21 : —— PDHG
composes locally into a manifold M passing through z*— € L EGM
encoding the active constraints—and its complement M€. % 104
On M, the function £ is smooth; off M, the subdifferen- ;
tials are bounded away from zero. Hence, small subdif- 107°1
ferentials can arise only on M. Consequently, if £&¥ — 0, < 10-5 ]
the iterates must eventually enter M, yielding finite iden-
tification. Once on M, the algorithm effectively solves a 10-10 L, : A :
smooth problem on a manifold; under a local error bound, 0 5000 10000 15000

Iterations

the algorithm exhibits linear convergence.

Although impressive in scope, this body of work suf-
fers from two limitations. First, existing results rely on
the strict complementarity of the limit solution, which
can only be verified a posteriori. In practice, algorithms
frequently converge to degenerate solutions that violate
strict complementarity—as occurs for all algorithms on the
problem in Figure 1. Second, most existing results guar-
antee only eventual active set identification without explicit finite-time bounds. These limitations
motivate the central question of this work.

Figure 1: Distance to solution versus
iteration count for several algorithms
applied to a degenerate QP. The vertical
dotted lines represent the last iteration
at which the active set changed.

What problem and algorithmic properties enable nonasymptotic, finite-time identification and
subsequent linear convergence without requiring strict complementarity?

To answer this question, we identify a set of mild properties that covers a broad range of
algorithms and problems. Algorithmically, we require: (i) certain structure on the dual updates,
ensuring feasibility, and (i7) convergence to a solution, in the sense of (3), with a sublinear decay of
the saddle subgradient norm. Once again, these conditions hold for major primal-dual algorithms,
such as PPM, PDHG, ADMM, and EGM. On the problem side, we require G(-) being Lipschitz
and an error bound on the saddle subdifferential: there exists o > 0 such that

adisty(z,8*) < dista(0, F(z)) for all z € D, (4)

where S* is the solution set and D is a set containing all iterates of the algorithm. This inequality
is known as metric subregularity and has been widely studied in variational analysis [28, 53]. It



generalizes quadratic-growth conditions [15, 17] and holds broadly; for instance, it holds for linear
programming (LP) problems where o can be bounded via the Hoffman constant [2, 26].

To state our nonasymptotic bounds, we need to introduce three key ingredients. The first
ingredient is the correct notion of an identifiable set. When strict complementarity does not hold,
we can still identify a set M, but unlike before, this set is no longer a manifold; instead, it is a
union of manifolds. In particular, assuming the algorithm converges to z*, we define the set

M ={(z,y) €R" x RT | G(z)y <0, yn =0, and yp, > 0}

with N := {i € [m] : g;(2*) < 0} the set of non-active constratints and B, := {i € [m] : g;(*) =
0 and y; > 0} the set of active constraints. When strict complementary holds, N U B, = [m)],
which ensures M is a manifold (in fact, a subspace). When it does not hold, the set of degenerate
constraints By := [m] \ (N U B,) = {i € [m] : gi(z*) =0 and y; = 0} is non-empty and M can be
described as a union of manifolds indexed by subsets of By,
M= U {(x,y) eR"xRY | G(x)y <0, yy =0,yr =0,yp,r >0 and yp, > 0}.
TCBy

The second ingredient is the radius of active-set stability, defined as the smallest perturbation
that flips the sign of some entry of G(x)y or ypg,; formally,

d := sup {t >0|G(z)ny <0and yp, >0 for all (x,y) € Bt(z*)}.

Intuitively, § measures how deeply z* lies in M; larger § means a wider margin by which the active
inequalities are satisfied. In turn, once the iterates enter Bs(z*), they remain there and, after a few
further steps, land on M.

2
dist (2°,5* : c : :
We show that (max{l, i}sm(&z)> + const iterations suffice to identify M,

where « is the metric subregularity modulus in (4) and const is a small constant depending on
algorithmic tuning. The quadratic term captures the time to reach the d-ball; the additive constant
accounts for the final steps to lock onto M.

The third and final ingredient is a notion of ‘restricted” metric subregularity as opposed to the
global’ notion. It is well known that when (4) holds, convergence of first-order algorithms gets
boosted from sublinear to linear; paralleling what happens with gradient descent on strongly-convex
smooth function. However, the rate depends on the modulus «, and when « is small, the linear
rate can be impractically slow. Crucially, once identification kicks in, it suffices to enforce metric
subregularity in a neighborhood of the identifiable set: replace D in (4) by M intersected with
a d-ball around the solution. Let a,, denote the corresponding restricted modulus; this constant
governs the post-identification linear rate.

4

After M is identified, O (1 log ( >> iterations suffice to find a z with dist(z,S*) < e.

1
2
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Importantly, a,, can be orders of magnitude larger than the global metric subregularity modulus and
this convergence rate holds even when M fails to be a manifold, thereby explaining the second-phase
speed-up and yielding nonasymptotic guarantees without requiring strict complementarity.



Outline. The rest of this section is devoted to related work. Section 2 briefly summarizes the
necessary background. In Section 3, we describe the problem and algorithmic classes that we
consider, and in Section 3.3, we verify that several popular algorithms fall within the algorithmic
class we study. Section 4 presents our general guarantees. Section 5 closes the paper with numerical
experiments supporting our theory. Lengthy, technical proofs are deferred to the appendix.

Related literature

Our work is closely related to that of the last two authors [43], who studied the central question of
this work for the particular case of PDHG applied to linear programs (LPs). Our answer builds
on their ideas but requires substantial changes. Two main obstacles to this generalization are: ()
the LP analysis is based on polyhedral geometry, which is unavailable for general convex problems
with functional constraints; and (i7) [43] leverages the explicit PDHG updates, whereas here we
distill the basic algorithmic conditions that still ensure the two-stage behavior. The second obstacle
necessitates more delicate arguments to treat algorithms such as ADMM, which lack several of the
structural properties enjoyed by PDHG.

Convex-concave primal-dual algorithms. Convex-concave saddle-point problems and their
associated primal-dual algorithms have been extensively studied for decades. The saddle-point
problems are also studied as instances of general variational inequalities. In 1976, Rockafellar’s
seminal work introduced the proximal point method (PPM) [51] for solving monotone variational
inequalities, while Korpelevich proposed the extragradient method (EGM) for solving convex—concave
saddle-point problems [29]. In [45], Nemirovski showed that EGM, as a mirror-prox instance, can
be viewed as an approximation of PPM. For saddle-point problems with bilinear interaction
terms, algorithmic development has been especially rich: the primal-dual hybrid gradient (PDHG)
method [10, 11, 62] and the alternating direction method of multipliers (ADMM) [7, 21] are widely
used in practice. More recently, it has been established that PDHG and ADMM can also be
interpreted as approximations of PPM [24, 42].

Finite time identification. Finite-time identification of active sets refers to an algorithm’s
capability to identify the underlying manifold or active constraints in finite iterations [8, 22,
56]. This behavior is often analyzed under the framework of partial smoothness [22, 33, 34]
and through the closely related VU-decomposition perspective developed by [31, 44]. Roughly
speaking, a function is partly smooth relative to a manifold if it is smooth along the manifold
while being sharply nonsmooth in directions transverse to it. This structure, combined with strict
complementarity, enables characterizations of identification and the subsequent fast local convergence
of algorithms. For example, manifold identification for dual averaging has been established in [30],
while forward—backward splitting methods have been shown to achieve finite-time identification
under similar assumptions [35, 37]. In the context of primal-dual methods, finite-time active-set
identification and local convergence of PDHG and ADMM are analyzed in [2, 38, 39, 59]. Recent
work [3] showed that finite time identification and fast convergence also occur for infeasible linear
programming problems, albeit with respect to an auxiliary feasible problem that characterizes the
direction in which the iterates diverge. However, these guarantees hinge on nondegeneracy of the
limiting solution—an assumption that is difficult to certify a priori and is frequently violated in
applications [18, 19]. To our knowledge, there are two notable exceptions. First, the line of work
initiated by [46, 57, 58], which develops modified sequential quadratic programming schemes designed
to recover two-stage behavior even in the presence of degeneracy. In contrast, our analysis applies to
standard first-order methods without any degeneracy-handling modifications. Second, the work [18]



develops a sensitivity and identification theory for (degenerate) mirror-stratifiable convex functions.
Our work, instead, is not concerned with sensitivity and does not rely on mirror-stratifiability.

Metric subregularity and growth conditions. Metric subregularity imposes a linear error
bound on the saddle subdifferential [13, 14, 27], serving as a unifying regularity condition across
diverse problem classes. Originally introduced in the early works of Robinson [50], metric subreg-
ularity is closely related to notions such as calmness and error bounds [16, 25]. Many structured
problems, including those involving piecewise linear—quadratic models such as Lasso and support
vector machines, naturally satisfy subregularity on compact domains [50, 61]. Motivated by these
applications, recent research has studied how first-order methods behave under this assumption. In
convex minimization, metric subregularity of the subdifferential has been shown to be equivalent to
quadratic growth conditions, leading to linear convergence [16]. Similar developments extend to
saddle-point and primal-dual settings, such as for PDHG and ADMM [41, 60].

2 Preliminaries

In this section, we review the notation and necessary background in linear algebra and convex
analysis. We defer the interested reader to the monographs [6, 52]. We use the symbols N and R
to denote the set of natural (without zero) and real numbers, respectively. Further, we use R to
denote R U {+00}. We denote the set of nonnegative reals as R. We endow R™ with the standard
dot product (z,y) = ="y and its induced norm ||z||s = \/(z,z). The symbols By(z) and By(z)
denote the open and closed ball of radius ¢ centered at z, respectively, and we label B := B1(0) and
B := B1(0). We use 8" to denote the set of n x n symmetric matrices. For a given M € 8™ we
denote its eigenvalues by A\ (M) > --- > A\, (M). We write Apax(M) for the largest eigenvalue of
M and A}, (M) for the smallest nonzero eigenvalue of M. We use St = {M € 8" : \,(M) > 0}
and SY, = {M € 8" : \,(M) > 0} to denote positive semidefinite (PSD) and positive definite
(PD) matrices, respectively. The symbol k(M) = A1 (M)/A,(M) denotes the condition number of
M. The symbol M denotes the pseudoinverse of M. Any M € S" induces a semi-inner product
(x,y)ar = ' My and a semi-norm ||z||3; = v/{x, 2) s that induces a pseudodistance. The symbol
Eﬁw (z) denotes the set of points whose M-pseudodistance to z is less than or equal to t. Similarly,
the symbol BM (z) denotes the set of points whose M-pseudodistance to z is strictly less than ¢.
Abusing notation, we define the M-pseudo-distance from a point = to a set Q C R” via

distys(z, Q) := ;gg |z =yl

When M corresponds to the identity, we drop the subindex and simply write dist. We define the
Euclidean projection onto a closed set @ as
proj(z) := argmin ||z — y||2.
yeq

Consider a function f: R™ — R. We let epi(f) = {(x,t) € R¥! : f(x) <t} be the epigraph of
f. The function is proper if the epigraph is nonempty. Analogously, we say that f is closed (resp.
convex) if its epigraph is closed (resp. convex). Given a convex, closed set @ C R"™, we define its
indicator function as

o(x) =
e(@) +o0o0 otherwise.

{0 ifx e @,

For a closed, convex, proper function f: R® — R and a point = € R", the convex subdifferential of



f at x, denoted by 9f(z), corresponds to the set of vectors g satisfying
f(z) > f(x)+{g,z — x) for all z € R™.

Similarly, for a function £: R™ x R™ — R U {400} which is convex in its first component and
concave in its second component, the saddle subdifferential at a point (z,y) € R™ x R™ is given by

Flow) = [aya(gﬁ—ﬁc(fé,y 33»] ’ ®)

where, for any fixed y € R™ we use 0,L(x,y) to denote the subdifferential of the function L£(-,y) at
x and an analogous definition follows for J,.

3 Setting and algorithms

In this section, we formalize the setting we study, state assumptions, and present a general algorithmic
template. Rather than focusing on a single method, we analyze a meta-algorithm satisfying mild
conditions. At the end of this section, we show that many popular methods fit this template.

3.1 Problem class

Our departing point is a pair of primal-dual problems of the form

min T max  h(y)
p* — ¢ zeR" f( ) and q* = { yeR™ (6)
st.  gj(z) <0 forallje{l,...,m}, s.t. y>0,

where the functions f and g; are assumed to be convex, and h(y) = mingern» f(x)+ (y, G(z)) with G
the map whose entries are given by G(x); = g;(x). This formulation subsumes linear and quadratic
programming and extends well beyond these classes. Primal-dual optimal solutions &* are given by
the set of pairs (x,y) € R"™™ satisfying
f(z) —h(y) <0 (Zero duality gap)
G(z) <0 (Primal feasibility) (7)
y >0 (Dual feasibility) .
As mentioned in the introduction (6) is equivalent to the minimax problem (2). For any z € R"™™
let F(z) € R™™ denote the saddle subdifferential (5) of the constrained Lagrangian function
L(z,y) = f(z) — trm(y) + (y,G(z)). By the saddle point theorem for convex optimization [52],
when the functions f and g; are convex we have F~1(0) = S*.
We will impose a standard set of assumptions on the primal-dual problem.

Assumption 1. Problem (2) satisfies the following two conditions.
1. (Convexity) The functions f and g; are convex for all j € [m].
2. (Existence of solutions) The set of primal-dual solutions S* is nonempty.

These conditions are standard. The existence of primal-dual solutions is equivalent to strong
duality p* = d* with primal-dual attainment, which is implied by constraint qualification conditions
such as the Slater condition.

Assumption 2 (Metric sub-regularity). For any radius ¢ > 0 there exists a > 0 such that
adista(z, 8*) < dista(0, F(2)) for all z € S*+tB.



The assumption asserts an error bound for the saddle subdifferential—known as metric subregu-
larity in the variational analysis literature [28, 53]—that is intimately related to quadratic-growth
behavior and the stability of solutions [15, 17]. The assumption holds for a broad class of primal-dual
problems; in particular, all LP problems satisfy it [2, 26].

3.2 Algorithmic template

In this section, we introduce the meta-algorithm we analyze. To solve (6), the meta-algorithm
maintains two sequences: the main iterates z¥ = (2*,y*) and the auxiliary iterates 2% = (&*, §*).

That is, the method is initialized at some z° and updates
2Rl 2R primalDualStep(zF). (8)

In a nutshell, ¥ is an intermediate update that we will use to describe our assumptions; yet for
several algorithms it is trivially equal to z¥. We also suppose that each algorithm comes equipped
with a PD matrix P € S?1"™ and its associated norm |[|z||p := V2T Pz, which dictates a natural
geometry to measure progress of the algorithm.

Next, we introduce three assumptions on the meta-algorithm (8). Assumption 3 is necessary for
eventual identification; Assumption 4 is required for local linear convergence; and Assumption 5, in
tandem with the first two, delivers nonasymptotic identification. We shall see in Section 3.3 that
all of these assumptions hold for several popular algorithms. For intuition, the reader might take
P =1, in which case || - ||p = || - ||2; this choice is realized by a number of methods.

Assumption 3. There exists a positive definite matrix P € S%, such that the following three hold.

(i) (Convergence) For any initial iterate z° € R™"™ there exists z* € S* such that

max{||zk—z*”P,sz_z*HP}_>0 as k — 00.

(77) (Dual update) There exists n > 0 (stepsize) such that dual update takes the form
Y = projry (y* +0G (@)
(i17) (P-Lipschitzness) For each ¢t > 0 and j € [m] there exist L§;, L}; > 0 such that
0@ — i) S LGlz—#lp and gy — ol < LYz — 2
for z = (z,y),2 = (2,y') € Bf (2%).

Let us comment on these conditions. The first condition essentially states that the algorithm
converges to an optimal solution point-wisely. The second condition is ubiquitous in primal-dual
algorithms tackling (6) as we shall see in the following section. The third condition, although not
standard, holds automatically provided the functions g; are Lipschitz continuous since in Euclidean
spaces all norms are equivalent. We state it in terms of the P-norm since it is a natural norm to
state our guarantees. In the appendix, we state a weaker, more technical assumption that only
requires P to be positive semidefinite, which is crucial to cover ADMM, whose associated P is
singular. In what follows, P denotes the same matrix as in Assumption 3. We use the range of P in
the statement of the next assumption, which under Assumption 3 is trivially the whole space (since
P is positive definite); we keep this form to remain compatible with the semidefinite (singular) case
handled in the appendix.

Assumption 4. The following two hold.



(i) (Subdifferential sublinear rate) There exists v > 0 such that

ydistp (29, S*)

S .
Vk

(i1) (Closedness to solutions) There exists 7 > 0 such that dista(2¥,S*) < 7 for all k € N.

dist p+ (0, F(2*) N range(P)) for any kK € N.

The first assumption states essentially that the subgradient F(z*) converges to 0 at a sublinear
rate, and the second assumption states the iterates stay in a bounded region from the optimal
solution set. These conditions are common among first-order methods. In turn, a simple consequence
of this assumption and metric subregularity is linear convergence. The next result formalizes this
statement. This is a well-known guarantee, we include it for completeness; its proof appears in
Appendix B.1.

Proposition 3.1. Suppose Assumptions 1, 2, and / hold. Let z* be the kth iterate generated by
update (8). Then,

0 < ag:= inf w
2D dista(z,S*)

Further, for any k € N we have

with D =8"+71B. (9)

Y )‘maX(P>

1
disty (2%, S*) < Ve exp (_14321) disto(2°,S*)  where v =
ag

2 [ev

The rate depends on the global metric subregularity modulus in (9). In practice, this constant
is often small, especially for badly conditioned problems, yielding impractically slow convergence.
Thus, it is common to observe an first stage of active set identification; the next assumption is key
in deriving bounds on this stage.

Assumption 5. The following two conditions hold.

(i) (Sublinear rate) There exists v > 0 such that the following inequality holds:
ydistp (20, S*)
vk
(77) (Star non-expansiveness) For any z* € S* the following inequality holds

|2* = 2*||lp < ||I2% — 2*||p for all k€ Np.

max {”Zk+1 - ZkHPa ||Zk - ZkHP} é fOT all k S No .

The next section shows that all these requirements are satisfied by several algorithms.

3.3 Instantiations of the meta-algorithm

In this section, we show that four classic algorithms for solving minimax problems satisfy the
assumptions defining the meta-algorithm described in Section 3.2. The proofs of all results in this
section are deferred to Appendix B.2.

Proximal Point Method (PPM). Fix n > 0, PPM [51] solves (2) by iteratively updating

1 1
E+1  k+1 . k|2 k|2
— G — ||z — — —|ly — . 10
(797« arg min, max f() + (4, G@)) + 5ol = 2%l = 5oy = o7l (10)
For this method, we trivially take Z; = z;. We highlight that solving (10) might be just as hard
as solving the original problem (6), and so, in most situations, this is not a practical algorithm.
However, it serves as a clean canonical baseline for our framework. The next result shows that PPM
satisfies all our assumptions; we defer its proof to Appendix B.2.1.



Proposition 3.2. Fiz any stepsize n > 0 and set the auxiliary iterates to 3* = 2F. Then, PPM
satisfies Assumptions 3, /, and 5 with P =n~'I and v = 1.

Primal Dual Hybrid Gradient (PDHG). Assume the constraints in (6) are affine, namely
G(z) = Az —bfor A€ R™*™ and b € R™. Fix n > 0, PDHG [10] solves the corresponding minimax
problems (2) by iteratively updating

gl proxnf(;rk —nATyk)

1k

+ Y

P og

Y Projrm (v +nAZ**)

PDHG is used extensively for inverse problems arising in imaging [5, 20] and large-scale linear
programming [1, 4]. The next proposition shows that PDHG satisfies all our assumptions; the proof
is deferred to Appendix B.2.2.

Proposition 3.3. Fix a stepsize n > 0 satisfying n < ||A|]gp1 and set the dual auziliary iterates to
1 T
I —A

be j* = y*. Then, PDHG satisfies Assumptions 3, 4, and 5 with P = [—HA 17 ] and v =1.
n

Alternating Direction Method of Multipliers (ADMM). As with PDHG, suppose that the
constraints are affine G(x) = Az — b, A € R™*" and b € R™. Fix n > 0, ADMM [7, 21] solves (2)
by iteratively updating

uF ! «— argmin (LRT (u) + (y*,u) + QHAJJk +u— b||2)>
ueER™ 2

yk+1 — yk + n(Axk —b+ uk+1)

2T« argmin (f(a:) + (Y"1 Az + Q”AH? + uf T — bH2> .
zeR" 2
ADMM underpins widely used quadratic and convex programming solvers such as OSQP and
SCS [47, 55]. The analysis of ADMM is more subtle. Indeed, unlike the other algorithms we
consider, ADMM does not satisfy Assumption 3 with a strictly positive definite P. Nevertheless, it
does satisfy a weaker version of it with P positive semidefinite, namely Assumption 3*. As alluded
to before, this version is more technical, and so we deferred it to the appendix. Nonetheless, all the
convergence guarantees we establish hold with either assumption. The next proposition shows that
ADMM satisfies this slightly modified set of assumptions; the proof is deferred to Appendix B.2.3.

Proposition 3.4. Fiz any stepsize n > 0 and set the iterates of ADMM to be 2F = 2+ = (2 y¥).
Assume there exists T > 0 such that dista(2F,S*) < 7 for all k € N. Then, ADMM satisfies

ATA AT
Assumptions 3%, 4, and 5 with P = [77 A 111 and v = 1.
n

This proposition supposes that Assumption 4 (i7) holds true. This is the case, for instance, when
A has full rank or when the solution set S* is bounded [7].

Extragradient Method (EGM). Assume the Lagrangian function £(z,y) = f(x) + (y, G(x)),
with f and G as in (1), is L-smooth, i.e., differentiable with L-Lipschitz gradients. Fix n > 0,



EGM [29] solves (2) by iteratively updating

PP g (V) 4+ Ja (@) )

gErt Projgm (" +nG ("))

wk—f—l — .I'k —H(Vf(i'k—H) + JG(:ﬁk+1)ngk+1)
Y projra (" +0G@EM)

EGM adds an extrapolation step to the vanilla gradient descent-ascent method to ensure convergence.
In turn, it can be EGM interpreted as an approximation of PPM [45]. EGM is used across a broad
range of modern minimax and saddle-point applications, including games, machine learning, and
imaging [12, 40, 49]. The next proposition shows that EGM satisfies all our assumption; the proof
is deferred to Appendix B.2.4.

Proposition 3.5. Fixn < 1/L. Then, EGM satisfies Assumptions 3, /, and 5 with P = I and
3

R T
4 Guarantees

In this section, we present our main theoretical results. Section 4.1 provides our identification
guarantees. Section 4.2 shows that the local geometry of the problem around the limit solution is
better conditioned than the full problem, which yield faster linear convergence. Section 4.3 compares
the metric subregularity moduli associated to the global and the local problems.

4.1 Finite time identification

Next, we state our finite-time identification results. We express these results in terms of the P-norm
|z|l[p = V2T Pz, which differs slightly from our narrative in the introduction where for simplicity
we used the Euclidean norm, i.e., P = I. To start, recall that the set we identify depends on the
active set at the solution we converge to z*. In particular, it depends on the index sets

N ={j e [m]:gjx*) <0},
B, ={j € [m]: gj(z*) =0, y; > 0}, and (11)
By ={j€[m]:gj(x*)=0,y; =0}.
We call N the set of nonactive indices, B, the set of active indices and By the set of degenerate
indices.! Further, we use the placeholder B = B, U B;. We say the solution z* is degenerate if it

does not satisfy strict complementarity, that is, if By # (0.
With this index partition, we define the identifiable set as

M = {(a:,y) eR" xR |G(z)y <0, yy =0, and yp, > 0}.

In light of Assumption 3, this is the effective domain of our algorithms. The weakly active indices
do not otherwise enter the definition; for (x,y) € M they are only required to satisfy yp, > 0.
Consequently, if By # ), the set M need not be a manifold—it has a border along y; = 0: 14 € By.
We define the radius of active-set stability as the size of the smallest perturbation of z*, with respect
to the P-seminorm, that violates one constraints Gy (x) < 0 and yp, > 0; formally

0 = sup {t € (0,00) | For all (z,y) € Bf (2*) we have Gx(x) <0, and yp, > 0}, (12)

!The indices in B, and By also go under the names of strongly and weakly active in the literature [46].
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Figure 2: Illustration of the radius of active-set stability (12).

The radius of active-set stability quantifies how internal the point z* is with respect to the set
M, modulo the requirement yy = 0. Indeed, we have BE(z*) N 2y € M (Proposition C.6 in
Appendix C.2), where

Zy={(z,y) e R" xR : yy = 0} . (13)
The following result shows that converging primal-dual algorithms with a projected gradient ascent
dual update eventually identify this intersection. We defer its proof to Appendix C.2.

Theorem 4.1. Suppose Assumptions 1 and 3 hold. Let z* be the kth iterate generated by update
(8). Then, there exists K € N such that 2* € BE(2*) N Zy C M for all k > K.

We note that we only require two basic assumptions for this asymptotic result. Variations
of this result have appeared in the literature before [8, 23, 56], typically without an explicit
quantification of the identification neighborhood. Making this radius explicit is the starting point for
nonasymptotic rates. Combining our characterization of 4 with metric subregularity yields explicit
rates of convergence towards the ball Bgﬁ(z*). Once inside the neighborhood, the iterates reach Zy
after a small number of iterations, depending only on the stepsize and Lipschitz modulus.

Theorem 4.2. Suppose Assumptions 1, 3, 4, and 5 hold and that the k-th iterate z* and the k-th
intermediate iterate % of the meta-algorithm defined in (8) are equal. Then, z* € B(‘;D/Q(Z*)QZ(] cM

provided
2 3 .. 0 * Ly‘
k> K= e<7AmaX(P)> Y S GO T | T
a(;5 jEN nng

ag

The constant ng in the definition of K is the smallest Lipschitz constant of g; on the ball
Bf'(2*). The constant ag corresponds with the ‘global’ metric subregularity modulus in (9). The
proof parallels that of Theorem 3.1 and is deferred to Appendix C.3. The first summand in the
definition of K corresponds to the time to reach the ¢ ball around z*, the second summand bounds
the number of additional iterations required to reach Zy. The latter depends on the choice of stepsize
tuning.

As noted in the paragraph after (9), for badly conditioned problems the constant a can be
small—we will see an explicit example in Section 4.3— so the resulting bound may be overly
conservative. To derive a more meaningful bound, we use a completely different approach that does
not depend on the global constant a, but rather on a local metric subregularity modulus given by

oy = inf diste (0, F(z))

14
zeD disty(z,87) (14)

g;(x)—g;(x*

2Formally, ng "= SUDLeRP (i )\sr z=2F]p ) It gj is constant in Bf (z*), then T% = 0, whence the bound in

Theorem 4.2 becomes unrealizable. In that case, as generalized in Theorem C.8, ?fj can be replaced by —2g;(z*)/9.

11



where Sy is defined as the set of primal-dual solutions to the following reduced system of equations
f(x) = h(y) <0, G(x)p <0, and y=>0. (15)

The set of solutions S* of the original problem solves a bigger system of equations (7). Hence,
§* C 87 and comparing the two definitions, we derive ay, > ag. With it we obtain the following.

Theorem 4.3: Finite time identification

Suppose Assumptions 1, 3, /, and 5 hold. Let z* be the kth iterate generated by update (8).
Then, 2* € Bf;/Q(z*) NZyp C M for all

3 .. 0 g 2 Ly'
k>K .= max{l,i} 8 Amax(P)2 dista (27, 57) + |max N
ar, 1) JEN nL%”j

A couple of remarks are in order. At first sight, it might appear that the bound in Theorem 4.2
gives a fast linear convergence in terms of 4, while Theorem 4.3 only yields sublinear convergence.
However, the linear convergence rate relies on the conservative global constant ag. In contrast, the
sublinear convergence is dependent on the local metric subregularity modulus «y, and can be more
informative than the global constant ag. Secondly, we would like to comment that the additive

Y

LY
term [mane N 77;]-‘ can be viewed as a rather “small” constant term that does not affect much of

T

J
the order of rate. The goal for this term is to guarantee that the iterates identify the set M after
reaching the ball B52 (z%).

4.2 Local rapid convergence

So far we have established that the meta algorithm (8) identifies the union of manifolds M after
enough iterations. After which, the algorithm effectively solves the primal dual problem restricted
to M. This restricted problem is better conditioned than the global problem, as it eliminates the
nonactive constraints at the limit solution. In turn, this speeds up the convergence from sublinear
to linear. We quantify this phenomenon via a local metric subregularity modulus

dista(0, F(2)) P
oy = inf ——"—~"22 where Ds=DNB;,(z*). 16
M sepsnm disty(z, S*) o 6/2( ) (16)
The following proposition demonstrates the faster local convergence after identification. More
formally, it states that, suppose after K iterations, all iterates z* for k > K stay in the union of
manifold M and they are not too far away from z*, then the iterates enjoy a faster local linear
convergence rate to the optimal solution set that only relies on the local sharpness constant a,

instead of the global sharpness constant .

Proposition 4.4. Suppose Assumptions 1, 2 and 4. Let z* be the kth iterate generated by the
update (8). Further suppose that there exists K > 0 such that for all k > K we have ¢ e DsN M.
Then,

disto (28T %) < Vev, exp (—1k> disto (25, 8*)  with v, =
2 [ev?]
Proposition 4.4 follows with the same proof as that of Proposition 3.1 by replacing v with v,,,
and is therefore omitted.
Putting together the finite time identification (Theorem 4.3) and the faster linear convergence
after identification (Proposition 4.4), we derive the following result, which presents the full charac-

7 Amax(P)

Vi
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terization of the two-stage convergence behavior of primal-dual algorithms. Its proof is deferred to
Appendix C.4.

Theorem 4.5: Two-stage convergence rates

Suppose Assumptions 1, 2, 3, 4, 5 hold and fix € > 0. Let 2* be the kth iterate generated by
update (8). Then, we have disto(2*,S*) < ¢ provided that

3 2 1
1 Y 8 Amax(P)2 dista (20, S* Ly, Amax(P)2 0
k> max{l,_} max (P)2 dista (2", 8*) + |max =2 | + pp [142In Y Amax(P)20 )
o, 1) JEN nng 20048
Finite time identification Fast linear convergence

with Pm = |V€’Y2 )\maX(P)z/a%/l-‘ :

Thus, he overall complexity is O <Oé%1(52 + % In (a‘jw)> A few observations in order. First, both
ar, and a,, are local metric subregularity constants, thereby avoiding dependence on potentially
conservative global constants. Second, this complexity order is consistent with that of PDHG for
linear programming, as described in [43]. Our results extend the analysis in [43] to general convex

optimization problems and a broader class of algorithms.

4.3 Comparison between metric subregularity moduli

In this section, we provide a comparison between the three metric subregularity moduli ag, af,
and o, defined in (9), (14) and (16), respectively, which underpin our theoretical results. We start
by showing that under mild conditions, we have a,, > ar > ag.

Proposition 4.6. The metric subregularity constants satisfy min{a, ar} > ag. Furthermore, if
the condition number k(P) < 4, then, a, > af.

The upper bound on «(P) is immaterial; except for ADMM, all algorithms we study satisfy it
provided that we take the stepsize 1 small enough. Further, we could relax it, as it only reflects our
choice of the identification radius of 6/2. Specifically, we could modify Proposition 4.4 to reach the
ball 86 with 6 € (0,1/2] and all our rates will change by constants and the constraint here would
reduce to x(P) < 6~2. We decided to state this version of the results in favor of simplicity. The next
example shows that the gap between these constants can be significant even in low dimensions.

Example 4.7. Let ¢ € R? such that ¢1,c2 > 0 and ||c[|2 = 1. Define

min (¢, x) s.t. (c,x) > |lcf]i and x1,22 > 0.
zeR?

We show in Appendix C.6, using a blend of theoretical reductions and numerics, that when 7 = 2,
z* € relint(S*) and P = I, we have

ag < min{ci,co}, 0.037 < ap <044, and oy =1.

Figure 3b shows that for small values of min{c, co}, the global modulus ag is orders of magnitude
smaller than the local moduli o, and a .

5 Experiments

In this section, we present numerical results to verify our major theoretical findings, i.e., finite-time
identification with subsequent linear convergence, even in presence of degeneracy. In particular, we
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Figure 3: Example 4.7. The left plot shows the feasible set and solutions S*. The right plot displays
the regions where the metric subregularity moduli could land versus ¢; (we take ¢; < ¢3).

run EGM, PDHG and ADMM over linear programming (LP), convex quadratic programming (QP),
and convex quadratically constrained quadratic programming (QCQP) instances. PPM is excluded
as its update rule does not have closed-form solution on these instances. The code for reproducing
these experiments is available at

https://github.com/pizqleh/degenerate-active-set.

Experiment setup. We use a MacBook Pro with an Apple M1 chip and 16 GB of RAM for all
experiments. We test the following three classes of problems.

LP. The instances are obtained by constructing root-node linear relaxations of mixed-integer
programs from MIPLIB 2017, which we write in standard form

min (c,z) s.t. Az <b.

zeR"

We initialize algorithms either at zero or at a random point of a sphere of radius 103, if zero is
already in the rapid convergence region.

Convex QP. We select instances from Maros-Meszaros datasets written in standard form
. 1
xrgg&(c, x) + 5(30, Qzr) st. Az <b.

We initialize either at zero or at a random point of the sphere of radius 10%, if zero is already in
the rapid convergence region.

Convex QCQP. We consider instances from QPLIB dataset written in standard form
1 1
mﬁn () + §<x,Q0x> st (cF x) + 5(:5, QFx) <bvF for ke{l,...m}.
TeR™
We only consider EGM for this class, since all the other algorithms cannot handle quadratic
constraints. We initialize EGM either at the suggested initial point Z%PLIB by QPLIB or, if that
is in the rapid convergence region, at a random point of a sphere of radius 10? centered at Z(%PLIB.

We set the iteration limit to 10° for all experiments. We use the stepsize 0.99 - ||A]|5; for all
algorithms solving LPs and QPs.® For QCQP, we use the stepsize (|| Allop + 1o |Q"|lop) !, where

3This step size ensures convergence for PDHG and ADMM, but not necessarily for EGM. Nevertheless, EGM still
converges in the examples we tested.
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Figure 4: Root-node relaxation of MIPLIB 2017 linear programs. Vertical dotted lines indicate
active set identification. Figures 4b and 4c all methods converge to degenerate solutions. In 4c,
ADMM identifies M and converges in just a couple of iterations.

A is the matrix whose kth row is ¢F.4

Convergence criterion. We report the KKT residual as progress measure, namely,

(f(z) = hly))+
KKT(z,y) = (G(2))+
(—y)+ 9
The KKT residual penalizes the deviations from the KKT system (7), whence it is zero if and only
if z = (z,y) € S*. We terminate the algorithms when the KKT residual of their iterates is no larger
than tolerance 10~3. We denote k as the index of the last iteration of the generated sequence, and

we set the converging optimal solution z* = z*.

Active set identification and degeneracy. In order to account for numerical inaccuracies, we
define the approximate identifiable set as

ME = {(z,y) e R" xR} |G(z)n- < —¢, |yn<| < e, and yp: > ¢},
where N = {j € [m] : gj(a:]_“) < —¢, \y;_“\ <e}land BE = {j € [m] : y?“ > e}. Here, we set the
numerical tolerance to e = 107, We define the iteration at which the algorithm identifies the
active set as
k* = {mink € [k] : 2* € M® forall ¢>k}.
The limiting solution z* is declared degenerate if the index set BS = {j € [m] : |g;(z*)| < ¢, \yﬂ <e}
is nonempty.

Results. Figure 4 and 5 present the behavior of EGM, PDHG and ADMM on LPs and QPs
respectively, while Figure 6 displays the behavior of EGM when applied to convex QCQP instances
(note that PDHG and ADMM are not applicable to QCQPs as their constraints are not affine). As
shown, all algorithms under consideration exhibit the expected two-stage behavior across all instances:
the iterates initially converge sublinearly toward a solution, and after identification (marked by the
vertical dotted lines in the figures), they transition to a much faster linear convergence regime. This

4This step size does not ensure convergence for EGM either, but it works in our tested examples.
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Figure 5: Maros-Meszaros convex quadratic programs. Vertical dotted lines indicate active set
identification. In 5c, the only algorithm that converged after 10° iterations was ADMM; PDHG and

EGM showed very slow progress.
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Figure 6: QPLIB convex quadratic programs with quadratic constraints. Vertical dotted lines
indicate active set identification. In both 6a and 6b the transition toward fast linear convergence
begins prior to identification, and locks in to a stable linear rate once identification occurs.

behavior persists even when the algorithms converge to a degenerate solution. In particular, in
Figures 4b, 4c, 5¢, and 6b, the convergent methods approach a degenerate solution. These empirical
observations support the theoretical results from Section 4.

Acknowledgments

We thank Robert M. Freund and Stephen Wright for insightful conversations and pointers to relevant
related work.

References

[1] D. Applegate, M. Diaz, O. Hinder, H. Lu, M. Lubin, B. O’Donoghue, and W. Schudy. Prac-
tical large-scale linear programming using primal-dual hybrid gradient. Advances in Neural

16



Information Processing Systems, 34:20243-20257, 2021.

D. Applegate, O. Hinder, H. Lu, and M. Lubin. Faster first-order primal-dual methods for
linear programming using restarts and sharpness. Mathematical Programming, 201(1):133-184,
2023.

D. Applegate, M. Diaz, H. Lu, and M. Lubin. Infeasibility detection with primal-dual hybrid
gradient for large-scale linear programming. SIAM Journal on Optimization, 34(1):459-484,
2024.

D. Applegate, M. Diaz, O. Hinder, H. Lu, M. Lubin, B. O’Donoghue, and W. Schudy. Pdlp: A
practical first-order method for large-scale linear programming. arXiv preprint arXiv:2501.07018,
2025.

M. Benning and M. Burger. Modern regularization methods for inverse problems. Acta
numerica, 27:1-111, 2018.

J. Borwein and A. Lewis. Conver analysis. Springer, 2006.

S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and
Trends® in Machine learning, 3(1):1-122, 2011.

J. V. Burke and J. J. Moré. On the identification of active constraints. SIAM Journal on
Numerical Analysis, 25(5):1197-1211, 1988.

Y. Cai, A. Oikonomou, and W. Zheng. Finite-time last-iterate convergence for learning in
multi-player games. Advances in Neural Information Processing Systems, 35:33904-33919, 2022.

A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with
applications to imaging. Journal of mathematical imaging and vision, 40:120-145, 2011.

A. Chambolle and T. Pock. On the ergodic convergence rates of a first-order primal-dual
algorithm. Mathematical Programming, 159(1):253-287, 2016.

T. Chavdarova, G. Gidel, F. Fleuret, and S. Lacoste-Julien. Reducing noise in gan training
with variance reduced extragradient. Advances in Neural Information Processing Systems, 32,
2019.

A. L. Dontchev and R. T. Rockafellar. Regularity and conditioning of solution mappings in
variational analysis. Set-Valued Analysis, 12(1):79-109, 2004.

A. L. Dontchev and R. T. Rockafellar. Implicit functions and solution mappings, volume 543.
Springer, 2009.

D. Drusvyatskiy and A. S. Lewis. Tilt stability, uniform quadratic growth, and strong metric
regularity of the subdifferential. SIAM Journal on Optimization, 23(1):256-267, 2013.

D. Drusvyatskiy and A. S. Lewis. Error bounds, quadratic growth, and linear convergence of
proximal methods. Mathematics of operations research, 43(3):919-948, 2018.

D. Drusvyatskiy, B. S. Mordukhovich, and T. T. Nghia. Second-order growth, tilt stability,
and metric regularity of the subdifferential. arXiv preprint arXiv:1304.7385, 2013.

17



[18]

[19]

[20]

[21]

23]

[24]

[25]

[33]

[34]

J. Fadili, J. Malick, and G. Peyré. Sensitivity analysis for mirror-stratifiable convex functions.
SIAM Journal on Optimization, 28(4):2975-3000, 2018.

J. Fadili, G. Garrigos, J. Malick, and G. Peyré. Model consistency for learning with mirror-
stratifiable regularizers. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 1236-1244. PMLR, 2019.

L. Fan, F. Zhang, H. Fan, and C. Zhang. Brief review of image denoising techniques. Visual
computing for industry, biomedicine, and art, 2(1):7, 2019.

R. Glowinski and A. Marroco. Sur 'approximation, par éléments finis d’ordre un, et la résolution,
par pénalisation-dualité d’une classe de problémes de dirichlet non linéaires. Revue francaise
d’automatique, informatique, recherche opérationnelle. Analyse numérique, 9(R2):41-76, 1975.

W. L. Hare and A. S. Lewis. Identifying active constraints via partial smoothness and prox-
regularity. Journal of Convex Analysis, 11(2):251-266, 2004.

W. L. Hare and A. S. Lewis. Identifying active manifolds. Algorithmic Operations Research, 2
(2):75-82, 2007.

B. He and X. Yuan. Convergence analysis of primal-dual algorithms for a saddle-point problem:
from contraction perspective. SIAM Journal on Imaging Sciences, 5(1):119-149, 2012.

R. Henrion, A. Jourani, and J. Outrata. On the calmness of a class of multifunctions. STAM
Journal on Optimization, 13(2):603-618, 2002.

A. J. Hoffman. On approximate solutions of systems of linear inequalities. In Selected Papers
Of Alan J Hoffman: With Commentary, pages 174-176. World Scientific, 2003.

A. Toffe. Necessary and sufficient conditions for a local minimum. 1: A reduction theorem and
first order conditions. SIAM Journal on Control and Optimization, 17(2):245-250, 1979.

A. D. JToffe. Metric regularity and subdifferential calculus. Russian Mathematical Surveys, 55
(3):501, 2000.

G. M. Korpelevich. The extragradient method for finding saddle points and other problems.
Matecon, 12:747-756, 1976.

S. Lee, S. J. Wright, and L. Bottou. Manifold identification in dual averaging for regularized
stochastic online learning. Journal of Machine Learning Research, 13(6), 2012.

C. Lemaréchal, F. Oustry, and C. Sagastizabal. The U-lagrangian of a convex function.
Transactions of the American mathematical Society, 352(2):711-729, 2000.

A. S. Lewis. Active sets, nonsmoothness, and sensitivity. SITAM Journal on Optimization, 13
(3):702-725, 2002.

A. S. Lewis and S. Zhang. Partial smoothness, tilt stability, and generalized hessians. SIAM
Journal on Optimization, 23(1):74-94, 2013.

A. S. Lewis, J. Liang, and T. Tian. Partial smoothness and constant rank. SIAM Journal on
Optimization, 32(1):276-291, 2022.

18



[35]

[36]

[37]

[38]

J. Liang, J. Fadili, and G. Peyré. Local linear convergence of forward—backward under partial
smoothness. Advances in neural information processing systems, 27, 2014.

J. Liang, J. Fadili, G. Peyré, and R. Luke. Activity identification and local linear convergence
of douglas-rachford/admm under partial smoothness. In International Conference on Scale
Space and Variational Methods in Computer Vision, pages 642—-653. Springer, 2015.

J. Liang, J. Fadili, and G. Peyré. Activity identification and local linear convergence of
forward-backward-type methods. SIAM Journal on Optimization, 27(1):408-437, 2017.

J. Liang, J. Fadili, and G. Peyré. Local convergence properties of Douglas—Rachford and
alternating direction method of multipliers. Journal of Optimization Theory and Applications,
172(3):874-913, 2017.

J. Liang, J. Fadili, and G. Peyré. Local linear convergence analysis of primal-dual splitting
methods. Optimization, 67(6):821-853, 2018.

M. Lou, K. A. Verchand, S. Fridovich-Keil, and A. Pananjady. Accurate, provable, and fast
nonlinear tomographic reconstruction: A variational inequality approach. arXiv preprint
arXiv:2508.19925, 2025.

H. Lu and J. Yang. On the infimal sub-differential size of primal-dual hybrid gradient method
and beyond. arXiv preprint arXiv:2206.12061, 2022.

H. Lu and J. Yang. On a unified and simplified proof for the ergodic convergence rates of ppm,
pdhg and admm. arXiv preprint arXiv:2505.02165, 2023.

H. Lu and J. Yang. On the geometry and refined rate of primal-dual hybrid gradient for linear
programming. Mathematical Programming, pages 1-39, 2024.

R. Mifflin and C. Sagastizdbal. On VU-theory for functions with primal-dual gradient structure.
SIAM Journal on Optimization, 11(2):547-571, 2000.

A. Nemirovski. Prox-method with rate of convergence o (1/t) for variational inequalities with
lipschitz continuous monotone operators and smooth convex-concave saddle point problems.
SIAM Journal on Optimization, 15(1):229-251, 2004.

C. Oberlin and S. J. Wright. Active set identification in nonlinear programming. SIAM Journal
on Optimization, 17(2):577-605, 2006.

B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. Conic optimization via operator splitting
and homogeneous self-dual embedding. Journal of Optimization Theory and Applications, 169
(3):1042-1068, June 2016. URL http://stanford.edu/~boyd/papers/scs.html.

J. F. Pena. An easily computable upper bound on the hoffman constant for homogeneous
inequality systems. Computational Optimization and Applications, 87(1):323-335, 2024.

D. Quoc Tran, M. Le Dung, and V. H. Nguyen. Extragradient algorithms extended to
equilibrium problems. Optimization, 57(6):749-776, 2008.

S. M. Robinson. Some continuity properties of polyhedral multifunctions. Springer, 1981.

R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM journal on
control and optimization, 14(5):877-898, 1976.

19


http://stanford.edu/~boyd/papers/scs.html

[52]
[53]
[54]

A

In this section, we show the details of the QP from Figure 1. The
QP is written in standard form

where the objective is given by

R. T. Rockafellar. Convez analysis, volume 28. Princeton university press, 1997.
R. T. Rockafellar and R. J. Wets. Variational analysis. Springer, 1998.

E. K. Ryu and W. Yin. Large-scale convex optimization: algorithms & analyses via monotone
operators. Cambridge University Press, 2022.

B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. Osqp: An operator splitting
solver for quadratic programs. Mathematical Programming Computation, 12(4):637-672, 2020.

S. J. Wright. Identifiable surfaces in constrained optimization. SIAM Journal on Control and
Optimization, 31(4):1063-1079, 1993.

S. J. Wright. Modifying sqp for degenerate problems. SIAM Journal on Optimization, 13(2):
470-497, 2002.

S. J. Wright. Constraint identification and algorithm stabilization for degenerate nonlinear
programs. Mathematical Programming, 95(1):137-160, 2003.

Z. Xiong. Accessible theoretical complexity of the restarted primal-dual hybrid gradient method
for linear programs with unique optima. arXiv preprint arXiv:2410.04043, 2024.

X. Yuan, S. Zeng, and J. Zhang. Discerning the linear convergence of admm for structured
convex optimization through the lens of variational analysis. Journal of Machine Learning
Research, 21(83):1-75, 2020.

X. Y. Zheng and K. F. Ng. Metric subregularity of piecewise linear multifunctions and
applications to piecewise linear multiobjective optimization. SIAM Journal on Optimization,
24(1):154-174, 2014.

M. Zhu and T. Chan. An efficient primal-dual hybrid gradient algorithm for total variation
image restoration. UCLA Cam Report, 34:8-34, 2008.

Missing details from Section 1

min (¢, x) + %(x, Qzr) st. Az <b
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Figure 7: Primal geometry. The

with § = /64, and the constraints are defined by constant ¢ is a proxy for the

radius of active set stability 4.

1 1/k i The constant ¢ in (17) satisfies
A - -1 1//16 and b= - , (17) ¢ = arctan(¢). The vector Up
0 - ¢ is the second column of U and

—¢ 1 k=9 (1 - E) satisfies ker(Q) = span{Us}.
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with ( =1/6, k =1/2, and 5= 1/219. To solve this QP, we initialize all algorithms at zero, and we

use the following stepsizes: for PDHG, we use 0.99|\A\|gpl; for ADMM, we use 2 - 0.99]|A[|5.; and,

-1
for EGM, we use 0.99\/(HQHop + [|Allop)? + [|A]|Z, . These choices ensure the convergence of their

9

respective algorithms. The criteria for declaring ‘convergence to the active set’ and ‘degeneracy
are the same as in Section 5. The convergence tolerance is set to 1071, while the active-set and
degeneracy tolerances are set to 1078, The solution (z*,y*) to which the algorithms converge
satisfies

Az* —b=(—3.906-1073,0,0,0) and y* = (0,0,0.863,0.135).
One can verify that By = {2} # (), hence this solution is degenerate.

B Missing proofs from Section 3

In this section, we present the missing proofs from Section 3.

B.1 Proof of Proposition 3.1

In this section, we derive the following slightly more general version of Proposition 3.1.

Proposition B.1 (Generalization of Proposition 3.1). Suppose Assumptions 1, 2, and J hold. Let
2F be the kth iterate generated by update (8). Then,
0<ag = zne% CM
Further, for any k € N we have
distp(2*, S*)
Amax(P)

with D=8"+71B.

max {distg(zk,S*), } < Vevexp <—1

3 0 Cx
k2 ) min {distg(zo,S*), W} ,

2 [ev?] Amax(P)?
(18)

where v = vy Amax(P)/aq.

Notice that in this convergence statement, we simultaneously bound the P-seminorm and the
fo-norm, which recovers the original statement. We prove this slightly stronger statement since it
will be used later on in other proofs. Further, as Lemma B.2 below shows the minimum on the
right-hand-side of (18) is always attained by the P-seminorm term. We included this redundancy as
it makes it clear that this statement generalizes Proposition 3.1.

Before we delve into the proof of this result, we derive two auxiliary lemmas that we will use. The
first lemma establishes the equivalence between the P-seminorm and the ¢s-norm on the range of P.
The second lemma shows that ‘Kuclidean’ metric subregularity implies P-norm metric subregularity.

Lemma B.2. For any positive semidefinite matriz P € Sfr” and point z € range(P), the following

inequalities hold:
VAmin(P)llzll2 < Mlzllp </ Amax(P)|2]]2
1 1
[2ll2 < llzllpt £ ———=1Izll2
V )‘r—;ln(P)

Proof. Define p = dim(range(P)), Q = pProj,apee(py € R™*Hm) and U € RMTM>P such that
Q =UUT and UTU = I. Notice that since P is symmetric, P = UXU " where ¥ € RP*? is a

>\max (P)

21



diagonal matrix with non-negative entries. For any z € range(P) we have
1213 = Q213 = 2TQTQz = 2TUUTUUTz = 2TUU Tz = |UT2|]* = |52 250 23,
where we used the invariance under projection of z. On the other hand,
IZ2UT 2|3 = |P22])3 = (P22, P22) = (2, Pz) = | 2|3
Also, by definition

1 1 1
)\max X2 2 = /\max E_l = = R d
B = e = sy = A
1 1
A (D)2 =2t () = - ,
mln( ) min ( ) )\max (2) )\maX (P)
Applying these identities in tandem with Cauchy-Schwarz gives
1
1213 = =325 07 2113 < Amax(Z72)2 220 2113 = ——:[|2]}, and
)‘min(P)
1
1213 = 1272220 23 > AL (B2 22U T 203 = ——: Iz 13-
)\maX(P)
The result for ||z||p+ follows analogously. O

Lemma B.3. Let P € 8! be a positive semidefinite matriz, S C R"™™ a set, and z € R™™™
such that acdiste(z,S) < dista(0, F(z)) for some a > 0. Then,

Ll max {distw(z, S), CW} < dist pt (0, F(z) Nrange(P)) .
Amax(P)? Amax(P)?
Proof. Let z € S be arbitrary. Then,
|2 = Zll2 > [|Projrange(p) (2 — 2|2 (Non-expansiveness)
> Amax(P) "2 [Projsange(r) (= = 217 (Lemma B.2)

1 _
= )\max(P)_2 ||Z - ZHP’
where for the last line we used that proj,nge(p) PrOjrange(p) = F- Since z € S is arbitrary, it follows
that distp(z,S) < )\maX(P)% dista(z, S). On the other hand,

adista(z, S) < dist2(0, F(2)) (By assumption)
< dist2(0, F(z) Nrange(P)) (F(2) Nrange(P) C F(z))
< )\maX(P)% dist p+ (0, F(z) Nrange(P)) . (Lemma B.2)
The result follows immediately by combining these inequalities. O

We are ready to prove a generalization of Proposition 3.1 under our regularity assumptions.

Proof of Proposition B.1. Let us start by establishing a few consequences of metric subregularity.
From Assumption 2 we obtain ag > 0. Furthermore, from Assumption 4 (ii) we have z¥ € D
for all K € N. Then, for any k € N we have ag dista(2¥, S*) < dist2(0, F(z¥)). Hence, invoking
Lemma B.3, yields that for any k& € N we have
distp(2*, S*
G max {distg(zk, S*), ISP(ZI)} < )\maX(P)% dist p1 (0, F(2*) Nrange(P)) . (19)
Amax (P)?
Fix the integer p = [er?] where v = YAmax(P)/ag. The strategy to prove this result is simple:
we show that after p consecutive iterations, the distance from 0 to F(z*) Nrange(P) contracts by a
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constant factor, and, then, we relate this back to the distance from the iterates to the solution set.
Consider two cases.

Case 1. First suppose that k > p and let n € N such that np < k < (n+ 1)p. Hence,

2
dist%,; (0, F(z%) Nrange(P)) < % dist% (2877, 8%) (Assumption 4 (i))
< e Amax(P) tag)? disth (2577, §*) (v, p definition)
< e dist? (0, F(2*7P) Nrange(P)) . (From (19))

By recursively applying the same argument n times, we obtain

dist%; (0, F(2*) Nrange(P)) < e~ dist%; (0, F(z*7") N range(P))

< e "y disth (20, S*) (Assumption 4 (i))
< 61_%’)/2 dist% (2%, S8*) (n>k/p—1)
< 617%72 Amax (P) dist3(2%,S*) . (Lemma B.2)

Taking a square root at both sides of the above inequality, we obtain

; 0 Cx
min {W,distg(zo,cs*)} .
)\maX(P)a

N

dist pi (0, F(2*) Nrange(P)) < veexp (—;) ¥ Amax (P)

(20)
The result follows by combining (19) and (20).

Case 2. Suppose k < p, applying the same rationale as before we derive

2 2
dist%,; (0, F(z¥) Nrange(P)) < % dist% (2%, 8*) < % Amax (P) dist3 (2%, S*).

Combining these inequalities with the fact that 1 <1 < eexp(—1) < eexp(—k/p) yields that (20)
holds. Once more invoking (19) yields the stated bound, which completes the proof. ]

B.2 Missing proofs from Section 3.3

In this section, we prove that the PPM, the ADMM, the PDHG method, and the EGM satisfy the
assumptions of the meta-algorithm introduced in Section 3.2. We begin by weakening Assumption 3.
This is required for the analysis of ADMM, which involves a positive semidefinite (PSD) matrix P
instead of a positive definite (PD) matrix. Recall that z¥ = (z*,y*) and 2* = (z*, j*) denote the
main and auxiliary iterates of the meta-algorithm (8).

Assumption 3* (Weak Asymptotic Identification Conditions). There exists a positive semidefinite
matrix P € Sfrm and a convex set Z C R™ with R™ x R'" C Z such that the following hold.

(i) (Convergence) For any initial iterate z° € R"™™ there exists z* € range(P) such that
max{[|2* —2*[|p, |25 — 2*|[p} — 0.

(77) (Dual update) There exists n > 0 (stepsize) such that the dual update has the form

ka = PTOJRT (?Jk + UG(ka)) .

Further, ¥ € Z.
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(¢4i) (Primal Lipschitzness) For any radius ¢ > 0 and index j € N there is a constant Li; > 0
such that any point z € Ef (z*) N Z satisfies

9i(x) = gj(z") < Lijllz = 2"[[p and |g;(z) — g;(Z)| < Lijllz — Zl|p
for all z € Ef(z*) N Z such that Zp. = zp..

(1v) (Dual Lipschitzness) There exists p € N U {0} satisfying that for any radius ¢ > 0 and index
Jj € N U B, there is a constant Ltyj > 0 such that for any initial iterates 2°,2° € Bf (:*) N Z
we have

yg—y]*gijHzO—z*Hp if j € N, and ]y?—gjﬂgL%’szo—EOHp if j € B,.

Recall that zP and ZP are the p-th iterate of update (8) when initialized at 2% and 2°,
respectively.

When P is PD, Assumption 3 implies this weaker version. When P is PSD, the sequence
generated by update (8) might not converge, which makes the analysis more nuanced. Indeed,
our assumptions ensure that it converges in the P-seminorm, which is equivalent to having the
sequence of iterates projected onto range(P) converges. Further, the point z* might not belong
to 8*. Moreover, the ‘simpler’ P-Lipschitz condition in Assumption 3 does not hold for ADMM.
Nevertheless, as we will see, ADMM satisfies the Lipschitz conditions of Assumption 3* with p = 1.
Also, we will see PPM, PDHG, and EGM satisfy Assumption 3, which implies Assumption 3* with
p=0.

The main ingredient in our argument is the next proposition, which identifies the generalized
resolvent as a firmly nonexpansive mapping. This property immediately yields convergence of the
corresponding fixed-point iteration, and in turn establishes the assumption in most cases. In its
proof and throughout the rest of the appendix, we use the following notation for the decomposition
of vectors onto the range of a matrix P € S% and its orthogonal complement. For any u € R9, let

u=up+up. where up € range(P), up. € range(P)’ = ker(P). (21)
The following is a well-known result; we include its proof for the reader’s convenience.
Proposition B.4. Let T: R — R? be a mapping, M: R* = R be a monotone set-valued
operator,” and P € Sf‘f_ be a positive semidefinite matrix such that

P(I —T)(u) € M(T(u)) for allu e R?.
Then, T is firmly non-expansive in the P seminorm, in the sense that
|7 () = D)3 + (I = T)(w) — (I = T)(0)|3 < Ju—vl} for all u,v € R,

In particular, if Sp = {u € R : T(u)p = up} # 0, for any u € R? there exists u* € S§ such that

| T%(u) — u*||p — 0 as k — oo.

Proof. Let u,v € R%. Since P(I-T)(u) € M(T(v))and P(I-T)(v) € M(T(v)), by the monotonicity
of M we obtain
(T(u) — T(w), P(T - T)(u) - P(I - T)(v)) > 0. (22)

®An operator M is monotone if (x — y,u —v) > 0 for all z,y € R%, u € M(z) and v € M(y).

24



Therefore, expanding the square and lower-bounding the crossterm yields
lu—vlfp = llu = T(u) + T(u) = T(v) + T(v) —vlp

=1 = T)(u) = (I = D))l + IT'(u) — T(v) ||
+2(T(w) = T(v), P(I = T)(u) = P(I = T)(

v))
>[I = T)(w) = (I = T)()lIp + I T(w) = T(v)]7 (Using (22))
Then, (T*(u)p)y is a Krasnosel’skii-Mann iteration over range(P) whence there exists a fixed point
u* € S} such that | T*(u)p — u*||p — 0 [54, Theorem 1]. O

Armed with Proposition B.4, we are ready to prove Propositions 3.2, 3.3, 3.4, and 3.5.

B.2.1 Proof of Proposition 3.2

By construction, the PPM update satisfies P(z¥ — zF*1) € F(2F*!) with P = n~'I. Then,
Assumptions 3 (i), 4 (i), and 5 (i7) follow from Proposition B.4. Moreover, [41, Theorem 1] shows

1
k+1 k : k : 0 ox
Z —z < distp; (0, F(z < —dist(2",87).
|| HP = PT( ( )) \/E ( )

Therefore, Assumptions 4 (i) and 5 (i) are satisfied with v = 1. Moreover, note that the updates
have the form

1
k+1 ) k+1 _ L CRN2 T, aE2
oyt = arg min max £(2) + (5, G @) + 5 (e =1 =y = o*1°)

1 1
= arg min {f(x) + glle =1 + min, {~w.c@)+ allv = y’fnz}}
Using first order optimality conditions we derive that the solution of the inner problem is y(z) =
projgm (y* + nG(x)). Thus,

e — 22 = (projrn (4 + nG()), Gla)

k+1 _ :
27" = argmin {f(a:) + o

zeR™
1
g lIproire (7 + nG(@) ~ 517}

Y = projry (¥ +nGF )

Then, PPM satisfies Assumption 3 (i7). To check Assumption 3 (iii) note that, by Assumption 1
(1), the functions g; are locally Lipschitz [52, Theorem 10.4]. Then, since P = n~!I, Assumption 3
(#47) holds with L{; = n and Lf; equal to 7 times a local Lipschitz constant of g; over By(2*).

B.2.2 Proof of Proposition 3.3

From [42], the PDHG update satisfies P(z* — z8*1) € F(2F*1) for P. A Schur complement argument
reveals that P > 0 if, and only if, n < ||A;). Then, from Proposition B.4, Assumption 3 (i), 4
(73), and 5 (77) are satisfied. Also, [41, Theorem 1] shows that

2548 = 2K p < distps (0, F(2F)) < k™2 dist(2", S*).

Note that ||2* — 2¥||p < ||2* — 2¥71||p, thus, Assumptions 4 (i) and 5 (i) are satisfied with v = 1.
Moreover, the PDHG dual update trivially satisfies Assumption 3* (ii). Fmally7 by Lemma B.2

1

Assumption 3 (iii) holds with Lf; < [[Allop Amin(P)”2 and LY, < Apin(P)™2

t] —
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B.2.3 Proof of Proposition 3.4

Our argument is based on the auxiliary primal problem

verdfilng 3) F emp (4) )

st. Ar+u=»b.
This problem is a recast of (6) into the standard form of ADMM [7, Section 3.1]. Explicitly, we add
the auxiliary variable u > 0, which allows us to write the inequality constraint Az < b as an equality
constraint. We focus on it because we can leverage the results from [42] to prove Assumptions 3*
(), 4, and 5 for the ADMM iterates for this problem. Subsequently, we can translate the results

obtained for the auxiliary problem to the original problem. Thus, the proof follows from the next
three steps.

Step 1. We prove that Assumptions 3* (i), 4 and 5 hold for the auziliary problem (23). That is,
they hold for the iterates w* = @w* = (u¥, 2*, y*), where we take (u, ) as primal variables.

Step 2. Leveraging Step 1, we prove that Assumptions 3* (7), 4 and 5 also hold for the original
problem (6). In this case, they hold for the iterates zF = 2% = (2, y¥).

Step 3. Finally, we show that items (i7), (ii7), and (iv) of Assumption 3* hold for the original
problem (23) with iterates z¥ = 2% = (¥, y¥).

To establish these steps, we will use the Lagrangian of the original and auxiliary problems, that is,
‘C(xvy) = f(CC) + <y7 Ar — b> - LRT(y)7 and E(u,x,y) = f([L‘) + LRI(U) + <y7 Ar +u — b>7

respectively. As well as their corresponding minimax subdifferential

Nrm(u) +y
of (z) + AT ~ Ry
Fla,y) = [b_ﬁ(x ):NRry(y)] , and F(u,a,y) = 8bf(_x24;r 1_4;?4 : (24)

k

Step 1. To analyze the iterates w* = @ = (u*, 2*, y¥) for the auziliary problem (23), define the

matrix P € S™t"*t™ guch that

0 0 0
P=10 nAT4a AT
0 A %I

A Schur-complement argument shows that this matrix is PSD regardless of 1. Invovking [42,
Corollary 3|, we obtain that the ADMM update satisfies

P(w® — wktl) e Fwh+h). (25)

Then, Assumption 5 (i7) holds follows from Proposition B.4. Further, there exists w* = (u*, 2*) €
range(P) such that |jw* — w*||5 — 0, whence Assumption 3% (i) is also satisfied. Use S* to denote

the set of primal dual solutions of the auxiliary problem (23), i.c., S* = F~1(0). Using [41, Theorem
1] we get

[ — w5 < dists, (0, F(w)) < k77 dist(w?, 8%) .
Therefore, Assumption 4 (i) and 5 (i) are satisfied with v = 1.

Step 2. To analyze the iterates z¥ = 2% = (2%, y¥), we now consider the matrix P. By the definition
of P, for any w = (u, z) and w = (u, z) in R™*" T we have

(@) lw—wlz=lz-2|p, and
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(b) w € range(P) if, and only if, z € range(P).

Therefore, we obtain ||z¥ — z*||p — 0 from (a), and z* € range(P) from (b). Thus, leveraging Step
1 we conclude that Assumption 3* (i) holds. Furthermore, applying (a) together with Step 1 we
derive that for any k € N,

||Zk+1 k+1

k k
=2l = " —wlp = 0 —wp = 2" = e

Taking limits shows that item (i) of Assumption 5 holds.

To show Assumption 5 (i), we claim that (z,y) € S* if and only if (u,x,y) € S*foru=Axr—be
R™. Indeed, if (z,y) € S* and u = Az — b, then immediately 0 = b — Az —u and 0 € 9f(x) + ATy,
by (24). Moreover, by feasibility and complementary slackness we have y > 0, u > 0, and (y, u) = 0.
It follows that —y € Nr= (u), or equivalently, 0 € Nr= (u)+y. Thus, according to (24), (u,z,y) € S*.
On the other hand, if (u,z,y) € S*, then u = b— Az, 0 € Of (z) + ATy, and —y € Nrr (u), by (24).
Hence, y € R* and y; > 0 implies u; = 0 for any j € [m], whence —u € Nrp (y). Thus, accordin

0 (24), (z,y) € S*, establishing the claim. Invoking (a) we obtain

dist 5(w’,8*) = distp(z°, S*) (26)
and [Jwk — w5 = |2¥ — 2*| p. Hence, Step 1 implies that Assumption 5 (i) holds with v = 1.
Next we turn to Assumption 4. Combining Step 1 and (26) we derive that it suffices to show
dist pt (0, F(2¥) Nrange(P)) < dist 5, (0, F(w*) Nrange(P)) (27)

to establish item (i) of Assumption 4.
Note that P = MM and P = MM, where

T=[o yaAT 1] and MT=[/gAT i) (28)
The columns of M and M are linearly independent. Applying Lemma B.5 (i) we derive
range(P) = range(M) = {(0,nA v,v) : v € R™}, and
range(P) = range(M) = {(nAT,v) : v € R™}.

Let & € F(w*) Nrange(P) such that ||7]| ps = distpy (0, F(wk) N rangeA(]S)). Since © € range(P),
from (29) there exists v € R™ such that ¥ = Mv. Moreover, since ¥ € F(wh), the y-coordinates of
Mv—recall (28)—and of (25) are equal: we obtain /7 'v =b— Az — . Then,

dist p: (0, F(w*) Nrange(P)) = ||M’UHPT (Definition of ¥ and v)
= ||v]|2 (Lemma B.5 (i7))
— Villb— Azk — w5,
Also, invoking (25) we obtain F(w*)Nrange(P) # 0, and so by (24) and (29) we get —y* € Nrep (u).

Hence, y* € R and yj“' > 0 implies uf = 0 for any j € [m], whence —u* € Nrm (y*). Using an
analogous reasoning for P and F we derive

distpt (0, F(2*) Nrange(P)) = /i inf{[[b — A" + (2 : ¢ € Nrp (4)}
< Villlb - Aak — ¥ (—u* € Nup(s)
= dist 5; (0, F(w*) Nrange(P)).
Thus, (27) is holds true and so Assumption 4 (i) holds with v = 1.

(29)

Step 3. Next we establish item (i7) of Assumption 3*. Equivalentely, we wish to show that the
dual update y**! can be interpreted as a projected dual ascent update on the original problem (2),

27



ie. yrtl = Projgr: (y* + n(Az¥ —b)). Note that
ker(P) = {(z,y) € R""™ : y + nAz = 0}.
Hence, recalling (21) we get
u**! = projgy (_nflyk Ry b) = projgy (_n*1y§3 — Az + b) :
Fix j € [m]. Then, we have two cases
(a) Suppose 0 > (y* + n(Az* —b));. Then, we derive from (31) that
ub T = projg  (—n7'yF — (A2h —b)); = (-~ k- (42" —b));.
Thus, yi " = (y* + 1~ (Azk —ny* — Az*)); = 0.
(b) Suppose that 0 < (y* + n(Az* — b));. Then, we obtain invoking from (31) that
uj = projg+ (—n~'y" — (Az* —b)); = 0.

Therefore, y}““ = yf +n(Azk —b);.

Thus, Assumption 3* (4¢) holds.
Next, we will show that items (ii7) and (iv) of Assumption 3* hold. To establish Assumption 3*

(i4), consider Z = R"™ x R and let z = (x,y) and Z = (Z,¥) in Z. Since yp + ypr > 0, we obtain
from (30) that yp > nAxp.. Then, for any j € N (recall the definition (11)) we have
\Aja: — Ajl'*’ = |Aj£l3'p + Ajmpl - Aja:*\

<|Ajzp+n Y yp); — (Ajz* + 07"y}

< [[4jll2llep = 2*[l2 + 07 lyp — y* 2 (Triangle Inequality)

(y; = 0 since j € N)

< (14502 + 07 Hllzp = 2*2
< (1A ll2 + 1)) X (P2 — =1 (Proposition B.2)
On the other hand, if ZpL = zp. then, from Proposition B.2 we obtain

Ajz — A;T = Aj(xp — Zp) < |Ajll2llep — Zpll2 < [|Ajll2llzp — Zpll2 < |4;ll2 Ahin (P12 — 2l p

Thus, Assumption 3* (i) holds with Lf; < (n™! + [|4j]2) AL (P)72.
Finally, we show that Assumption 3* (iv) holds with p = 1. Consider any initial iterates
20 = (29, 40), 20 = (2°,7°), and index j € [m]. Then,
ly; — 751 = [projr., (4} +n(A;2° — b;)) — projg, (¥ + n(A;2° — b))
= |projr, ((yp); + n(Aj2% — bj)) — projr, ((UP); + n(A;Zp —b))|
< |(yp); +n(Ajep —b) — ([Up); +1(A;2° — b))
< llyp = gpll2 + 0l Ajllopll2h — 2|2
< (L+ 0l Az llop) 123 — Zpl2
< (1 1l Aj lop) Asin (P) 7212 = 2°]
So Assumption 3* (iv) holds with p = 1 and L, < (1 + | A;l|op) )\Ilin(P)f%.

(Assumption 3* (7))

(From (30))
(Non-expansiveness)
)

(Triangle Inequality

(Proposition B.2).
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B.2.4 Proof of Proposition 3.5

Invoking [9, Appendix I, Theorem 9], we derive that for any k£ € N the iterates of EGM satisfy
< 3 diStQ(ZO,S*)

TVI-(MD? Ve
Therefore, EGM satisfies Assumptions 4 (i) and 5 (i) with P = I and v = 3(1 — (nL)Q)fé. To verify
Asusmption 3 (i), first note that the iterates of EGM are bounded [9, Appendix G, Corollary 1].
Then, its set of accumulation points, denoted as A, is nonempty. We will see that A is a singleton.

By Assumption 1 (z), F has closed graph [52, Theorem 24.4]. Then, using (32), we derive 0 € F(z)
for all z € A and so A C §*. Further, EGM is Féjer monotone [9, Appendix G, Lemma 1], that is,

|28 — 2|y < ||2F — z||]z forall zeS*. (33)

Next, we show that there is only one accumulation point. Suppose seeking contradiction that there
exist 2,2’ € A such that z # 2/, and define A = ||z — 2/||2/2. Since z € A there exists kg € N such
that ||z%0 — z|| < A. Furthermore, from (33) we obtain ||zF — 21|z < ||2% — z||z < A for all k > ko.
Then, by the triangular inequality, for all k > ko,

12 = 2Flls > |12/ = 2lla — [l = 22 > 24 - A= A.

max(n dist2(0,8.7:(zk)),2_lek — zkHHg, sz — ~ng) (32)

It follows that 2’ is not an accumulation point, yielding a contradiction. Thus, A is a singleton
and EGM satisfies Assumptions 3 (i) and 4 (i7). Further, EGM satisfies Assumption 5 (ii) thanks
to (33). By definition, EGM satisfies Assumption 3 (i7). To check Assumption 3 (iii) note that,
by Assumption 1 (i), the functions g; are locally Lipschitz [52, Theorem 10.4]. Then, since P = I,
Assumption 3 (iii) holds with L{; = 1 and L§; as a local Lipschitz constant of g; over By(2*).

B.2.5 An auxiliary result

We prove an auxiliary result used in the proof of Proposition 3.4.

Lemma B.5. Let S € 81 and M € R with linearly independent columns such that S = MM .
Then, the following two hold true.

(i) The ranges of these two matrices are the same range(S) = range(M ).
(ii) For any v € R¥ and u = Mv we have ||u|gt = ||v]2.

Proof. Since M has linearly independent columns, M ' is surjective. Hence, range(S) = range(M),
whence there exists v € RF such that © = Mwv. Since M has linearly independent columns,
Mt = (MTM)™'MT notice that

ST= (MM =M M =(M"M) MDY (M M) M =MM ™M) (M "M)TMT.
Therefore, for any v € R*¥ and © = Mv we have

lull§ = (u, Plu)s = (Mo, M(M M)~ " (MTM)™ M Mu)y = (v,0)2 = ||]|3.

C Missing proofs from Section 4.1

In this section, we prove our identification results, that is, Theorem 4.1, 4.2, and Theorem 4.3. To
establish these results we derive an algebraic charaterization of the radious of active-set stability.
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C.1 Radius of active-set stability

In this section, we show that the geometric definition of the radius of active-set stability introduced
in (12) can be characterized algebraically through the Lipschitz constants of the constraints and
the primal-dual solution to which the algorithm converges. To this end, we define the ‘optimal’
Lipschitz moduli for a P-ball of radius ¢ as stated in Assumption 3*. Formally, for all j € [m] we
define the Lipschitz modulus functions L7 : (0, +00) — R and fg : (0,4+00) = R given by

(5 — v+

and LY(t)= sup ~L—L T (34)
I z=(z,y)EZs ||Z - Z*HP

— (95(2) — 9;(a%)),

z=(z,y)EZ¢ ||Z - Z*HP

where (-)+ extracts the nonnegative part of its input and Z; = (Ef(z*) NZ)\({z*} +ker(P)). Recall
Z is defined as part of Assumption 3* (iii).

Now we extend the definition radius defined in (12) to account for the set Z introduced in
Assumption 3*. Define

dg = sup {t € (0,00) | For all (z,y) € B (2*) N Z we have Gy(x) <0, and yp, > 0},
We consider an alternative characterization of this radius, dubbed 4, defined implicitly via

d4 = min {min ;g](x ) min =22 } , (35)

JEN LF(04) j€Ba LY(34)

where ff() and fg() are the optimal Lipschitz modulus functions defined in (34). This gives a
well-defined notion of radius. We write Lifgj and ng as shorthands for I?(é A4) and fg(é A)-

Lemma C.1. Suppose that Assumption 3* holds and that 6 is finite. Then, the function
A: (0,400) - R U {+00} given by

A(t) = min {min 7_&(33*) mi y]* }

, min =
jeN  LE(t) j€Ba L;J.(t)

has a unique fixed point. Thus, 04 is well-defined and finite.
In turn, 64 and g are closely related. The following is the main result of this section.

Proposition C.2. Suppose that Assumption 3* holds and that d¢ is finite. Then,
o4 <dg.
Moreover, equality holds if Assumption 3* holds with Z = R™"™™ and p = 0.

We remark that all algorithms satisfy Assumption 3* with Z = R"™ and p = 0, except for
ADMM, which instead requires Z = R" x R and p = 1. The rest of this section is devoted to
establishing Proposition C.2. We start with a proof of Lemma C.1, since it contains some of the
necessary ingredients for establishing Proposition C.2.

Proof of Lemma C.1. We need to show that there exists t* € (0, 00) such that A(¢t*) = t*. To prove
this, first we show that ¢ — A(t) is continuous and non-increasing in its domain, which we prove is
an unbounded open interval. Clearly, ¢ — t is also continuous but increasing without bounds. Then,
we show that there exists ¢ € R such that A(¢) > ¢. Thus, by continuity and monotonicity, A and
the identity function must intersect at some point greater than or equal to t. To formalize this, we
divide the proof into four steps. The first three steps derive properties of ff, fg, and A, and the
final step uses these properties to derive the conclusion.
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Step 1: Continuity of ff and fg We will see that, under Assumption 3%, I?” is finite and
locally Lipschitz-continuous if j € N. The same applies to fg ifje NUB, .

Finiteness follows directly from Assumption 3* (i7i) and (iv). To establish the continuity of ff
for any fixed j € N, define the auxiliary function h: R"™\({z*} + ker(P)) — R given by

() — a0 (2"
h(z) = W for any 2 = (z,y) € R"™™\({z*} + ker(P)) .
—2*||lp
Also, for any s < s1 € (0,00), define the ‘P-shell’
S(so,81) ={2€ Z:50<||z—2"|p < s1}.

Fix tp € (0,00). First, we will show that h is locally Lipschitz continuous uniformly along affine sets
parallel to range(P). Define sg € (0,%p) and s; = 2ty — sp; note that ty — s9 = s1 — top > 0. For any
z,2" € S(s0,s1) such that zp. = 25, , define w = ||z — 2*[|p and ¢ = g;(z) — g;(z*) and analogously
w’ and ¢’. By the triangle inequality and Assumption 3* (i),

so <w < sq, so < w' < s, lw—o'| < ||z = 2|p, (36)
max{|C|,[¢'|} < Lg,;s1, and |¢— (| < L llz =]
Therefore,
|h(z) — h(2)| = (ww')"Hw'¢ — w('| (Definitions of h, w, and ()
< (W) HW ¢ = )+ w = ') (Triangle inequality) (37)
<2L% jsis |z — 2 |lp. (From (36))

Hence h is uniformly Lipschitz continuous over S(so, s1). Next, we establish the continuity of L7(-).
Let t € (0,00) such that |t —tg] < |so —to|. Denote ¢ = max{t,ty}, £ = min{t, ¢y}, and for any ¢ > 0
define z° € S(¢,?) such that h(2%) + ¢ > sup{h(z) : z € S(¢,t)} . Then,

L7(#) = max {Lf(t), 68;1(1;%) h(z)} < max {ff(t), h(zf)} +e, (38)

where the first equality follows by definition. Let u® € Ef (2*) such that uf = 2* +]|2° — 2*[| ' (25 —
2*) + 23, . Since z* € range(P),

12° = wfllp = (1 = tl|2° = 2*[|p1)l12° = 2*[lp = ||2° = =*|lp —t <T—t.
By construction, u%, = 2%, . Then, from (37), i.e. the Lipschitz continuity of h, we obtain
|h(2%) — h(u®)] < 251ijsa2|]26 —u|lp < 2ijslsa2(f —1). (39)

Also, since u® € ﬁf (%), from ff definition we have h(u®) < LT”(;) It follows that

|L%(t) — Li(t)| = L3 (t) — LE (1) (Definition of LY, #, and t)
< max {T5 (), (=)} ~ I5(0) + (From (35))
< max{0,h(z°) — h(u®)} + ¢
<2LY jsisgP(E—t) +e. (From (39))
Since € > 0 arbitrary, \ff(t) - ff(tg)| < 2L§1j31352|t — to|. Moreover, since ty € (0,00), £ € (0, %),

and t € [tg — &, to + &] are aribitrary, ff is locally Lipschitz continuous. The proof for the functions
fg with j € N U B, is completely analogous.
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Step 2: Positivity of ff and 17]’ The functions ff and fg take non-negative values and
are non-decreasing by construction. Furthermore, at least one of them is strictly positive for all
t sufficiently large. This is because, since dg is finite, there exists 20 = (20,9y") € R and
j € N U B, such that g;(z°) > g;(2*) or y? < y;.;[‘hen, foitdom = ]2° — 2| p, L% (to) or L?(to) is
strictly positive. Furthermore, by monotonicity, L7 (t) or Lg(t) is strictly positive for all ¢ > tgom-

Step 3: Properties of A. The function A is positive, non-increasing, and locally Lipschitz-
continuous on its domain, which is equal to an interval of the form (¢,00) with ¢ > 0. To prove
this, first recall that the functions ff and L? take non-negative real values.Moreover, —g;(z*) > 0

for all j € N and y; > 0 for all j € B,. Hence, A is positive. Also, the functions Lizc and fg non
non-decreasing, whence A is non-increasing. Define

tsup := sup{t € (0,00) : L¥(t) = 0 for all j € N and LY(t) = 0 for all j € B,}. (40)
From Step 2 we obtain that tg,p < tgom < 00. Since A is non-increasing, A(t) < oo for all ¢ > tgp.

Furthermore, by Step 1 the functions ff and fg are continuous, whence if the supremum is not

equal to zero in (40), then it is attained and A(tsyp) = o0o. It follows that dom(A) = (tsup,00).

Moreover, A is locally Lipschitz-continuous on dom(A) since it is the minimum of compositions of

locally Lipschitz-continuous functions, that is, A = min{mincy h;v o LT%, minjepg, hfa oLY ;} where
B, _

hY(t) = —gj(*)/t and hj“(t) = yj/t.

Step 4: Fixed point existence and uniqueness. Let F': (0,00) — [—00,00) be such that
F(t) =t — A(t). Note that A(t*) = t* if and only if F(¢t*) = 0. The function F is increasing
unboundedly and it is continuous, because A is non-increasing and continuous (see Step 3). Then,
by the Intermediate Value Theorem, to verify the existence of t* € (0,00) such that F(t*) = 0 it
suffices to show that exists ¢ € (0, 00) with F'(t) <0, or equivalently, ¢t < A(t). If t5up = 0 (see (40)),
then ¢t < A(t) for any ¢t < min{1, A(1)}, because A is non-increasing by Step 3. If tg,p > 0, then
A(t) — oo when t — tg,p. This is because the supremum is attained in (40), as shown in Step 3, and
the functions Lijc and LY are continuous, as established in Step 1. Hence, for any € > 0 sufficiently
small and ¢ = tg,p + € we obtain ¢ < A(t). Thus, there exists t* € (0,00) such that F(t*) = 0. Its
uniqueness follows from the strict monotonicity of F'. This concludes the proof of Lemma C.1.

O

Armed with this lemma, we are now ready to establish Proposition C.2.

Proof of Proposition C.2. We start with a claim that we will be useful for future arguments.

Claim C.3. Suppose that Assumption 3* holds and that d¢ is finite. Then, for any 6 € (0,1), and
primal-dual point 2° = (2°,9°) € E(I;;A (%) N Z we have

—g;(2%) > (1 - H)ngéA forallj €N, and y>(1- G)ngéA for all j € B, .
In particular, any primal-dual point 2° = (2°,9°) € B(I;DA(Z*) N Z satisfies Gn(2°) < 0 and vl > 0.
Proof of Claim C.3. By Claim C.1, 04 € (0,00) is well defined. Let z = (z,y) € Eg:;A(z*) N Z and
j € N. From (35), we derive —g;(z*) > LigjﬁA. Then,

—gj(x) = —gj(x*) — (g;(x) — g;(2*)) > —g;(a*) — L§,llz — 2*|p > L§;04 — LF;004 = (1 — 0)LF;04.
(41)
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The result for the dual bound follows analogously. Note that for any 2% = (2°,9°) € BfA (2*) there
exists § € (0,1) such that 2¥ € ﬁf;;A (2*). Then, from (41), g;j(z) < 0 if ng > 0. Otherwise, if
ng =0, gj(z) < gj(z*) <0, because j € N. O

An immediate consequence of this claim is that d4 < dq.

Next, we show that the converse inequality d4 > dg also holds when Z = R™™™ and p = 0.
Let € > 0 and consider the ball B5PA 42:(2%). Since 04 is the unique fixed point of A, and A
is non-increasing, then A(d4 + ¢) < 64 + €. Thus, either (a) there exists j € N such that
0a+e > —gj(x*)/L%(0a +¢), or (b) there exists j € B, such that d4 +¢& > y}/fg((SA +¢€). Suppose

(a) is true. Then, from the definition of ff, there exists z € §§A+E(z*)\({z*} + ker(P)) with

9i(x) = g;(@*) _ —g;(=")
|z — 2*||p 04+e
If ||z—2*||p < 04 +e, define and 2’ = 2*+ (04 +¢€)(z — 2%)/||z — 2*||p. Note that z = 02"+ (1 —0)z*
for 0 = ||z — 2*||p/(04a +¢) € (0,1). Also, ||z — z*||2 # 0, otherwise the LHS of (42) would be equal
to zero, contradicting the inequality. Furthermore, by the homogeneity of the seminorm,

¢:

(42)

_Nlz==le _ 116G =29)llp _ (12— 2*]lp
B P | PR E e P
On the other hand, Assumption 1 (i) gives us that g; is convex. Then, considering that z is a convex
combination of 2’ and z*, and that ||z’ — 2*||p = d4 + €, we obtain
B) =06 gl —g6) g
0ate Clla" — x*[|2

_ 95(x) — g;(@*)

— (=2

_ gi(z) — g;(=%)
IR
—g;(«*)

0a+e
Therefore gj(z’) — gj(z*) > —g;(2*) and, consequently, g;(z’) > 0. If (b) is true, by an analogous

(43)

(Convexity of g;)
(From (43))

> (From (42)).

argument we get that there exists j € B, and z = (x,y) € §§A+5(z*) such that y; < 0. In
either case, the constraints G (z") < 0 and y > 0 are not satisfied at every point of B(];DA 4oe(27).
Thus, dg < d4 + 2¢ and since ¢ was arbitrary, we obtain dg < d4. This concludes the proof of
Proposition C.2.

O

C.2 Proof of Theorems 4.1 and 4.2

In this section, we prove generalized versions of Theorems 4.1 and 4.2 using Assumption 3*. We
transcribe the statement of these results here for completeness. To do this, first we extend the
set defined in (13) to account for the set Z introduced with Assumption 3*. In the context of
Assumption 3*, we denote

2y ={(z,y) € Z:yn = 0}.
Note that this is equal to (13) when Z = R"™,

Theorem C.4 (Generalization of Theorem 4.1). Suppose Assumptions 1 and 3* hold. Let z* be the
kth iterate generated by update (8). Then, there exists K € N such that 2 € B?A (z*)NZy T M
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for all k> K .5

Theorem C.5 (Generalization of Theorem 4.2). Suppose Assumptions 1, 3%, 4, and 5 hold and
that the k-th iterate z* and the k-th intermediate iterate 2% of the meta-algorithm defined in (8) are
equal. Then, zF € B5PA/2(Z*) N 2y € M provided

i {e <’MmaX(P)>2 1421In <4)\max(P)g diStQ(ZOvS*)>] + ’Vp + max Lg]—‘ )
aq OéG(SA JEN an
where
C. = {695] if[T;xj >0
’ —2g;(z*)/64  otherwise.’

Let us make a couple of remarks about the statement of this result. Recall that ng =

SUD,eBP (24)\2* %. If g; is constant in BY(2*), then Liffj = 0, whence the bound in The-
orem 4.2 becomes unrealizable. The constant C; in Theorem C.5 auxiliates this edge case. It is
natural to wonder whether the condition 2* = 2* for all k € N is essential for the above result—note
that ADMM and PPM satisfy it, but PDHG and EGM do not. This condition is not essential.

The same conclusion holds provided that, for all k € N, dist p(0, F(z%)) < Nmt:ifo’s*) . Under
2

this bound, linear convergence of z* follows by an analogous argument to the one used for z* (see
Propositions 3.1 and B.1), and this is sufficient to conclude Theorem C.5.

The strategy we use to establish active set identification is straightforward. Recall that the
identifiable set is characterized by the (in)equalities Gy (x) < 0, yp, > 0, and yy = 0. Since the
iterates converge to z* in the P-norm, they remain inside BéDA /Z(z*) after a sufficient number of
steps. Then, Claim C.3 gives us two conditions that any point inside this ball satisfies.

(i) The magnitude of the nonactive constraints G is negative and uniformly bounded away from
zero, establishing the Gy (x) < 0 identification inequality.

(77) The multipliers of the active constraints yp, are positive and uniformly bounded away from
zero, establishing the yp, > 0 identification inequality.

To prove the remaining equality yy = 0, note that any point inside BCI;A /Q(z*) also satisfies that the
multipliers of the nonactive constraints yx are close to zero, since they are close to yx, = 0. With
this and (7), the iterative application of the meta-algorithm’s dual update—gradient ascent projected
onto R''—ensures that yy = 0 after a sufficient number of steps. Finally, active set identification
can be guaranteed in a finite number of steps leveraging the explicit rates of convergence of the
meta-algorithm and the metric subregularity condition of the problem.

We begin with a few auxiliary propositions that will be used in both proofs. The next proposition
provides a sufficient condition ensuring that the iterates eventually lie in the union of manifolds M.

Proposition C.6. Suppose Assumption 3* holds. For any initial iterate 2°, if 2¥ € Bf;DA (z*) and
2P € BgA(z*) N Zy, then zP € M. In particular, if p = 0, then BfA(z*) NZyC MO

Proof. Since, 2° € Bé: (z*), from Claim C.3 we have y%a > 0. Similarly, since 2P € B(I;A(z*), we
have G(2P) > 0. Also, since zP € Zy, we have yj; > 0 and yy, = 0. Thus, 2P € M. O

The following Proposition shows that once the iterates enter BJPA /2(2*)7 it takes a few more
steps to reach the active set M.

SWe emphasize that §4 in this statement is the quantity defined in (35); by Proposition C.2, it coincides with dg
as defined in (12) whenever Assumption 3* holds with p = 0.
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Proposition C.7. Suppose Assumption 3* holds and that the iterates satisfy z*, z* € E(I;A/Q(z*) NnZ
for all k € Ng. Then, z* € M for all

Ly L% if LE. >0
k>p+ max— =: K, where Cj;= 0] if 0] 6
N nC; —2gj(x*)/6a otherwise.”
Proof. Fix j € N. First, for any k > p we aim to prove
k—1
yy =projr, v+ > ng;(@) | . (44)
t=p

We proceed by induction. For k = p, the result is trivial. Now, assume (44) holds for some k > p.
To exploit the induction hypothesis we claim that for any a € R and b < 0 we have

projgr,, ((projg, @) +b) = projg  (a +b). (45)
To prove this, suppose a > 0, then projg, a = a whence the result follows trivially. Now suppose
a < 0, then (projg, a)+b=b < 0 and a+b < 0, whence projg , ((projg, @) +b) = 0 = projg, (a+b).
Since #* € E(I;DA/Z(Z*) N Z, invoking Claim C.3 we derive g;(3*) < —LT;”].(SA/Q < 0. Thus,

Y = PIojg, (y;C + ngj(jk)) (Assumption 3* (7))
k—1
= projg, (projR+ (Z yf + ngj(fcz)) + ngj(ik)) (Induction hypothesis)
t=p
k
= projr, |4 + > ng; (@) (Using (45)).
£=p

Thus, (44) holds for any k£ > p. Now, let £ > K. Combining 2P € E(];DA /2(2*) N Z and Assumption 3*
(iv) we obtain
y?:y?—yj <Ly ||z *HPSng(SA/Q-

Moreover, using Claim C.3 in tandem with the fact that ¢ € E(I;DA/Q(Z*) forall £ € {0,...,k—1}, we
derive g;(7¢) < LTdA/Q for all ¢ € {0,...,k —1}. IfLT;”j = 0, then g;(3°) = gj(2*) < 0, whence,
g;(#") < —Cjd4/2 < 0. Consequently,

k—1
Y+ S gy () < LE6a/2 — (k— p)nCiéa/2 < 0.
l=p

The last inequality holds because £ > K. Thus yf =0, from (44). Since j € N is arbitrary, yf\, = 0.
Moreover, from Assumption 3* (ii) we have y% > 0. Thus, 2¥7P € B(I;A (2*) and 2F € B(];DA (z%) N 2o,
whence z* € M, from Proposition C.6. O

Now we have the main ingredients for the proofs of Theorems C.4 and C.5.

Proof of Theorem C.J. From Assumption 3* (i) there exists M € N such that z*, 2% € BY /2( z*) for
all k> M. From Proposition C.7 it suffices to take K > M + p + [max{L;(n Cj) t:jeN}]. O

Proof of Theorem C.5. Let € > 0 and z* € S* such that distp(2¥,S*) > ||2¥ — 2*||p + £. Denote
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V=" Amax(P)/ag. p=[eyAmax(P)/ag]. Then,

|25 — 2*||p < ||2* — 2"||lp + ||z — 2*||p (Triangle inequality)
<228 — 2P (Assumption 5 (i7))
< 2distp(2*,8*) + ¢ (Defintion of z*)
1 k
<2 )\max(P)%\/Ey exp (_2W> dista (2", S8*) + ¢ (Proposition B.1).

Since ¢ > 0 is arbitrary, [|2F — 2*||p < 2y /\maX(P)%\/é/aG - exp(—k/2[e(y Amax(P)/ac)?]) -
disto (2%, 8*). Thus, 2F = 2F € B (2*) whenever

54/2
2 3 s 0 c*
. [e (fy/\maX(P)) w 4ol <4mmaX(P)z dista (20, S ))1 .
ag agda

By Proposition C.7 it suffices at most (p+max{ng(77Cj)*1 : J € N} more steps to identify M. O

C.3 Proof of Theorem 4.3

In this section, we prove a generalized version of Theorem 4.3 using Assumption 3*. We transcribe
the statement of this result here for completeness.

Theorem C.8 (Generalization of Theorem 4.3). Under Assumptions 1, 3%, /, and 5, the k-th
iterate satisfy 2% € M whenever

3 . 0 * 2 Ly‘
k> (max{l,l} 8 Amax(P) distp (7, § )> + {p%—max 6]-‘ ,

ar, oa jeN nC;
where
c, - {ng if L, > 0
—2g(x*)/64 otherwise.
We start with some notation and auxiliary results that will help us handle taking projections
despite the lack of invertibility of P. Recall that, for any point u € R" ™, we let
uw=up+up. where up € range(P), up. € range(P)T = ker(P).
Similarly, for any set S C R™"™, we denote
Sp={up:ueS} and Sp.={upL:ueS}.

If S is a nonempty closed and convex set, Sp is also a nonempty and convex set that might not
be closed. Thus, the P-projection of a point z € R™ over S, argmin{||u — z||p : u € S}, is not well
defined in general. To overcome this difficulty, for any nonempty, convex S C R"™ set, and £ > 0 we
define the P-closure-projection and the (P, ¢)-almost-projection as the point and set-valued map
given by

fg(z) = argmin ||lu — z||p and ngs(z) =5N Ef(fg(z)), respectively.

uECl(SP)
The P-closure-projection is well defined as a point instead of a set since cl(Sp) is nonempty, convex,
and closed, and || - || p is a norm when restricted to range(P). We will use the following auxiliary
result.

Lemma C.9. Let S C R™™™ q nonempty convex set, and z,w € R™. Then, for any u € 775&(2)
and v € ng(w), the following hold true.
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(i) (Convergence) Any sequence 2* € Pf;sk (2) with e — 0 satisfies ||2F — fg(z)ﬂp — 0.
(i1) (Non-expansiveness) ||f§(z) —fg(w)ﬂp <z —=w|p and |lu —v||p < ||z —wl||p + 2¢.
(ii1) (Fized-points) For any z € S we have z = fg(z) € 733;5(2).
(iv) (Distance to S) For any e > 0 and u € Pge(z) we have
distp(z,S) = ||z — fg(z)Hp < |lz = ul|lp < distp(z,S) +¢.

Proof. Ttems (i) and (7ii) follow directly by definition. Item (iv) follows easily from the Triangle
Inequality. Finally, since || - || p is a norm in range(P) and (norm)-projections over nonempty closed

convex sets are nonexpansive, and so ||f§(z) —fg(w)Hp = |lup —vpllp < |lzp —ypllp = ||z — Yyl P
Therefore, by the triangle inequality, we recover (ii)

=P =P =P =P
lu—vllp < [[Ps(2) = Ps(w)llp + lu = Ps(2)llp + [lv = Ps(w)lp < |z —yllp + 2¢.

Now we have all the ingredients for the proof of Theorem C.8.

Proof of Theorem C.8. Denote & = §4/2 and

3 9 0 Qx 2
K = (max{l,l} 8 Amax (P)> distp (27, S )> )

arg, oA

For any z € R"" and ¢ > 0, we write P(z) := argmin{||u — z||p : u € cl((S})p)}, and P.(2) to
denote some fixed element of sz L(2)=81N Ef(f(z)) Any time we write P.(z), we refer to the

same element of sz .(2). The proof consists of six steps.

1. We show that for any k > K, we have
|28 — 25 p < €/4 and distp(2F,S}) < £/4 forall k> K. (46)

S =P . N
2. We prove that for any k > K, if P(2¥) € Bg /o (2%) then PANS Bf/g(z ).

3. We establish that projections P(z*) are indeed close to the optimal solution z* for large enough
iterations. Formally, for any k > K we have that P(z*) € ﬁg/Q(z*).

4. Combining steps 2 and 3, we conclude that any & > K holds z* € BZ2 (2%).
5. We use Step 4 to show that for any k& > K we have ¥ € Bf(z*).

6. Leveraging Proposition C.7 we conclude that it takes [p+max{Lg; (nC;)~':j € N}] additional
steps for the iterates to reach M.

Next we execute these steps in detail.

Step 1. For the first inequality in (46), we have

1251 = 2F|lp < TZL distp (2%, S*) (Assumption 5 (7))
2

< ]:l )\max(P)% diStQ(ZO,S*) (PI"OpOSitiOD B2) .
2
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Therefore, ||z8! — 2¥||p < £/4 provided that k > K > (4v )\max(P)% distp (2", 5%)/€)%. For the
second inequality (46),

1
distp(2¥,S7) < — Amax(P) dist p1 (0, F(2*) Nrange(P)) (Definition (14) & Proposition B.3)
ar,

< L Amax(P) distp(2°, S%) (Assumption 4 (7))
ark?

<~ Amax(P)? dista(°, S%) (Proposition B.2).
ark?

Therefore distp(2*,S}) < /4 whenever k > K > (4y )\max(P)% distp(2°,8%)/ar€)?.

Step 2. We make use of the following simple lemma.
Lemma C.10. Suppose Assumption 3* holds. Then, S} N B(I;A (z¥) C S*.

Proof of Lemma C.10. Let z € 87 N B?A (2*). Note that S C Z. Since z € B(;PA ()N Z, from
Claim C.3 we obtain G(z)y < 0. Since z € S}, G(x)p <0, y > 0, and f(z) — h(y) < 0. Hence,
z e S O

Let k > K and suppose |P(z¥) — 2*||p < &/2. Then, there exists £ > 0 such that P.(z*) €
Eﬁ:(z*) - B(I;DA(Z*) for all £ € (0,£]. By Lemma C.10, P.(z*) € S* for any ¢ € (0, ], whence

128 = 2*||p < 1128 = P.(2P)|lp + I = P-(z")|p (Triangle inequality)
< 2|28 = P.(2M)|p (Assumption 5 (ii))
< 2distp (2", S%) + 2¢ (Lemma C.9)

Since € € (0, ] is arbitrary, ||2* — 2*||p < 2distp(2*,S%). Then, from Step 1 we get z* € Bg/z(z*).

Step 3. We aim to prove that P(z*) belongs to

BZ2(2*) for any k > K by contradiction. Let k > K

and suppose that |P(z*) — 2*||p > £/2. By Assump-
tion 3* (i), there exists a maximum ¢ € N such that
|2* — 2°||p > £€/2. Our goal is to show that (a) £ > K,
and (b) z¢ and 2*! belong to two parallel halfspaces
that are at distance £/4. These together contradict the
bound on consecutive iterates derived in Step 1.

To prove that ¢ > K, we claim that z* € cl(S}).
To prove this, fix ¢ > 0. From Assumption 3* (i) and
Proposition B.1 there exists k € N such that [|2F —
z*||p < €/3 and distp(2¥, S*) < /3, respectively. Let
2" € 8* such that distp(zF,S*) > ||2F — z*|p + /3.
Then,

distp(2*,8%) < [|2* — 2"||p

) ’; i . Figure 8: Visualization of Step 3. The
< [lz" = Zi”P + 112 —§7H orange ball §Z2(2) depicts a forbidden
<|z* - Zk||p + distp(zk7 S*)+¢/3 region for the iterates, given by star non-
<e expansiveness (Assumption 5 (ii)). The

blue solid region depicts the set S7.
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Since € > 0 is arbitrary, distp(z*,S*) = 0, whence z* € cl(Sp). Then, since cl(Sp) C cl((S7)p),
from Lemma C.9 (ii) we obtain

l2* = 2*llp > [l12* = P(")]lp > /2.

Therefore ¢ > k > K, by maximality.
Now we delve into the proof of ||z¢ — 2/F1||p > £ /4. The strategy is to construct a point that is
both in S} and in the boundary of Bg/Q (2*) that faces z‘; in particular, by Lemma C.10 it has to
be also in S*. From star non-expansiveness we obtain that 2! has to be far away from that point,
and from convexity we get that it has to be also far from z¢—see Figure 8 for an illustration of the
geometry of the argument. To formalize this, first note that, since ||z* — 2||p > £/2, from Step 2

we obtain [|z* — P(z%)|p > £/2. Then, there exists & > 0 such that
inf |2 — P.(") [ > /2. (47)

e€(0,¢]

Also, since z* € cl(Sp), for all £ > 0 there exists z*° € S* such that ||z* — 2*¢||p < e. Then, define
_ £ PRYH -2 B £ Po() - 2*e )
Z=2"+>—=—>"—— and ZF=2"+2 for any € € (0,2]. 48

2P(%) — = lr Y XEEE P oW

£+1)

From (47), ¢ is a convex combination of z*¢ € §* C S} and P.(z € 87, and from Assumption 1

(1), S7 is convex, whence z2° € S7. Then, since z° € §§2(z*), from Lemma C.10 we obtain
z° € §*. Denoting 04 = |P(2%) — 2*||p and A, = | P-(2%) — 2*||p, by the triangle inequality we have
|64—Ad < ||P(2°) =P(2Y)|lp < eand 64— < A, < §4+¢. Hence, for any € € (0, min{é&, 1,04/2}),

0 —
2= 2lp < /2187 (Po(=") = 2) = 631 (P) = ) lp + | = =*]lp

e JA AT P - ) — 57 P — e+ e
— £(26400) 5a(Pa(=") — ) — ALP() — )| + <
= 6(2640)  64(Pa(=") = P(D)) + (54 — AJP() +64(2* — %) + (Ac — )21

+e

(I11) _ —
< E(2040) 7 (0alP=(2) = P()llp + 1A = 0allP()l|p + 0allz* — 2*°

+104 = Aclllz"][p) + €

P

1v) _
< €(20400) " 1e(204 + Pl + 1l2*]1p) + e

\Y%
(S) e(145,°(204 + [P P + 12711 p))
—-0 as —0,

(49)
where (I) follows from the triangle inequality and (48); (II) from the definition of z*¢; (III) from
the Triangle Inequality and homogeneity; (IV) from the definitions of 2*¢, A., and P.z%; and (V)
from the inequalities A, > 64 — e > §4/2. In particular, Zp € cl(Sp). Then, consider the halfspace

Hy={z€R"™: (z—2z,z—2")p >0}.

We claim that z¢ € H,. Suppose to the contrary that 2z ¢ 7. Note that, by construction
P(2Y) — 2% =264/ - (2 — 2*), whence P(2%) — 2 = (P(2") — 2%) — (2 — 2*) = (264&7 1 — 1) (2 — 2%),
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and then <zZ — E,f(zg) — z)p < 0 since ¢ ¢ HT and 204/& > 1. It follows that
128 =PI =2 — 2= (P(z") — 2)|B
= [|lz° = 2B — 2(z" — 2, P() — 2)p + |[P(2") — ZIIp
> |2 = 2|5

This is contradiction to the definition of P(2¢), since zp € cl(Sp) C cl((Sg)p). Therefore, z* € H.
Now, let Z = (Z + 2*)/2, and consider the following halfspace

H_={zeR"™:(2—22—2")p <0}.

We will show that 21 € H_. From the definition of n, 2! € By (). Furthermore,
£/2

|25 = Z|p > |25 = 2 |lp — |12 - Zlp (Triangle inequality)
> |z =Z%|p— |12 —2°||p (Assumption 5 (7))
> |I2* = zZ|lp — 2|2 — 2°||p (Triangle inequality)
>&/2 2|z - Z°p (Definition of z)
—¢/2 as £—0 (From (49)).

Since ¢ is arbitrarily small, 2! ¢ B§2(§). Then, to conclude that z/*! € #_ it suffices to show that
By /o(2*)NHE C BE,(%). To prove this, let u = 2/&-(2—2*). Note that Z—2* = (2—2*)/2 = £/4-u
and z—Z = z—(Z+42%) /2 = (z—2*)—(2—2%) /2 = £/2-(2/&- (2—2*)—u/2). Hence, (z,—2,2—2")p <0
if and only if (2/¢ - (z — 2*) — u/2,u)p < 0. It follows that
Ho=2"+¢&/2-{zeR": (z —u/2,u)p <0}
B y(z") = 2* +£/2-B{ (0), and
B{)y(2) = 2" +¢/2- B (u).
Then, by the possibility of translating by —z* and then scaling by 2/, assume without loss of
generality /2 = 1 and z* = 0, implying u = z in the above representation. Let z € Ef(()) NHE.
Since z € HE, 2(z,2)p > ||z]|3 = 1. Then, ||z — 2[|% = ||2]|% — 2(z,2)p + ||2]|3> <2 -1 = 1.
Therefore, z € BY'(2). Since z € Ef(O) NHE is arbitrary, Ef(()) NHS C BY(2). Thus, 2+ € H_.
Now, we claim that distp(Hy,H_) = £/4. Similarly as before, for u = 2/£ - (z — z*) we have
He=2"4§/2-{zeR": (z —u,u)p > 0}.
Hence, assume without loss of generality /2 =1 and 2* =0. Let 2~ =z/2€ H_and 2" =z € H,.
Clearly, ||z~ — z*||p = ||2||p/2 = 1/2. Therefore distp(H_,Hy) < 1/2. For the reverse inequality,
let 2~ € H_ and 27 € H,. Denote
+ + +

2t =2F —I—z; where 22 = 7<zi, ||2HI§12>P and z; =zT -2z,
where + represents + or —. Then, by orthogonality, we have
I =27 = Il — 2z 1B + 25 — 20, 1P

> |l2F -2z IIp

= (=" =27, 21 2 | 211

> (7, 2)pl = (=7, 2)p|

> |1Z13(1 - 1/2)

=1/2.
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Therefore, distp(H_,H.) > 1/2 = £/4. Tt follows that ||2*t1 — 2¢|| > £/4. But, from Step 1 we
have ||zf — 2*1||p < £/4, a contradiction.

Step 4. Combining Steps 2 and 3, it holds for any k > K that z* € BZQ(Z*).

Step 5. From Assumption 5 (i) we have
128 — 2*||p < ydistp(20,8%)/k2 .
Then, whenever k > K > (ydistp(zY,5%)/€)? we obtain ||2F — 2¥||s < £/2, whence
128 = 2*|lp < (|17 = 2%|lp + 12 — 2*|lp < €/2+€/2 = €.

Step 6. Using Steps 4 and 5 we have that 2¥, 2% € Bf(z*) for all k > K. Then, by Proposition C.7
the iterates need at most [p + max{Ly; (nC;)~t: j € N}] more steps to reach M. O

C.4 Proof of Theorem 4.5
From Proposition 4.3, the kth iterate generated by update (8) satifies 2* € B(ISA /2 (2*) N M whenever

LR 0 ox 2 LY.
k>K .= (max{l,l} 8 Amax(P)? dista (27, § )> + ’Vmax 5‘7—‘ 0

oy, (SA JEN nLémj

Then, from Proposition B.1, for all k¥ > K we have

1k ) Amax (P

disty (¥, 8*) < Vevexp (— 5 ) A - where v = w

2 [er?] Amax(P)? oG
Rearranging, we recover the result of Theorem 4.5.
C.5 Proof of Proposition 4.6
(ap > ag) Clearly Ds, N M C D,5 whence

oG = in dista (0, F(2)) < inf dista (0, F(2)) o,

2D dista(z,S*) 2€Ds ,AM  dista(z, ST)

ar, > ag) By construction, S* C 8%, and then disto(z,S7) < dista(z,S*) for all z € R,
L L
Hence,

L dista(0, F(2)) _ .. dista(0, F(2))
=inf —————— 22 < inf —1—°2 = .
@G T 2D dista(z,8%) 2D dista(z,87) ¢

ay > ap) Let z € BY | (2%). Let 2* € S* such that ||z — 2*||2 = dista(2z,S¥). Suppose to the
54/2 L I

contrary that z* ¢ B(I;DA(Z*). In particular, z* ¢ Eéj(z*) for ( = ||z — z*||p. Let (p = )\min(P)féC/Q.
From Proposition B.2 and since k(P) < 4,

125 = 2|2 > Amax(P) 72 ]12* = 2*][p > Amax(P) "2¢ = K(P) "2 Amin(P) "2¢ > Amin(P)72¢/2 = (p .

Thus, 2* € B¢, (2*), whence projﬁC (%) z* # z*. Conversely, from Proposition B.2 we obtain
P

1 1
12 = 2"ll2 < Amin(P) 2|z = 2"[lp < Amin =2 (/2= Cp.
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Then, z € B¢, (2*), whence projﬁg ()% = 2- From the firm-non-expansiveness of the projection,
P
we obtain

* 2 s * s 2 * s *\ o s 2
12" = 2llz > ||P1"0JBCP(Z*)§ prOJBCP(Z*)ZH2 +[I(z PIOJB, (272 )= (2 PTOJBCP(Z*)Z)HQ
=lz— PTOjECP(Z*)é*Hg +llz" - PTOjECP(Z*)Z*H%
s * ]2
>z — PrOJB , (:+)2 2 -

This contradicts that, by construction, z* = argmin{||z — 2/||2 : 2’ € S8} }. Therefore, z* € B?A (z%).
Moreover, from Lemma C.10, z* € §*. Hence, dista(2,S*) < dista(z,S7) for any z € B?A/Q(z*).
Then, since Ds, C B(SPA/Q(z*), we obtain

op < inf T0FE) oy dise0,FG) L dish(0,7()
2€Ds, dista(z,S}) 2€D;, dista(z,S*) 2€D;5 ,AM  dista(z, S*)

Completing the proof of Proposition 4.6. 0

C.6 Derivation of the results from Example 4.7

In this section, we prove that the problem of Example 4.7 satisfies
ag <minf{cy,ca}, 0.037 < ap <044, and oy =1.

To do this, rewrite the problem as

¢ llelly
min (c,z) st. Az <b, where A=—-|1 0|, b=—-] 0
zeR? 0 1 0

By inspection, it is easy to see that
S*=8; xS, where S;={zr¢c R? : (c,z) = ||c[1} and S, =1{(1,0,0)}.

We now show an explicit form for the distance to zero of the saddle subdifferential. Let z = (z,y) €
R" x R and I = {j € [m] : y; = 0}. Using Proposition C.11, we obtain

dist3(0, F(2)) = lle + ATy[3 + [l max(0, (Az — b)1) |3 + [|(Az — b) 7|3 -

9 9
, (c,z) —cllx (c,z) —[lcllx
= [[(T —y1)c — y2e2 — yzes||z + x1 + x1
T2 17 —lig T2 Icll2
(50)

where e; is the i-th canonical vector.
The following analysis holds for P = I and any solution z* € relint(S*).

Estimation of an. Let z = (x,y) € Bs(2*) N M. Note that
M= {(z,y) e R 21,29 >0, y1 >0, y2,y3 = 0}.
Then I = {2,3} and (50) becomes
dist3(0, F(2)) = lell3(1 = 91)* + (e, ) = [le]l1)? .
Furthermore, since z € Bs(z*) N M,

_ 2
dist3(z,8*) = dist%(y,S;) + dist3 (2, S2) = (1 —y1)? + (W) .
2
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But ||c||2 = 1, hence
dist2(0, F(z))

ay = inf ——1 22 —1.
M eDsnM dista(z, §*)

Estimation of ag. We provide upper bound estimates for ag in terms of 7 and min{ecy,ca}.
Dependence on min{cy, co}. Assume without loss of generality that ¢; > co. For any € € (0,7) let
z = (2,y) € R™™ such that = (0,(1 + &) +¢) and gy = (1,0,0). Note that z € D. Moreover
c+ ATy =0and I = {2,3}, whence (50) becomes

dist3(0, F(2)) = [(AZ — Dh[* = ((e2 + e1) + 22 — [lel[1)? = (e26)”
On the other hand, we have diste(z,S*) = . Gathering up, we obtain that
g dist2(0, F(z)) < dist2(0, F(2))
in
2D diste(z,8*) — diste(2,S*)
Dependence on 7. For any € > 0 let 7. = 7 — ¢ and z° = (z,y) € R""™ such that ¢ = 2* + 7.c and
y = 0. Note that z € D. Moreover, in view of (50), we have I = {1,2,3}. Hence,

dist3(0, F(2)) = [le|3 = 1.

ag = = min{cy, e} .

Furthermore, we have
= 2
dist3(z, %) = dist3(z, S}) + dist3(5, S}) = (W) +1=1+72.
cll2

Gathering up, we obtain that ag = O(t71):

e~ g S02(0.F() _ dista(0.F(Z) 1w 1

€D dista(2,8%) T dista(2,8%) I+ 12 V1+712

Estimation of ay. Invoking Proposition C.12 we obtain
Sf =8y X Sory where Sovp={zcR*:(c,z) =1} and 8., ={(1,0,0)}.

Hence, following the analysis of a¢, we derive oy, < 1/4/1 + 72 . In particular, when 7 = 2 we obtain
ay, < 0.44 However, we can not follow our previous analysis for ag to obtain ay, < min{c;, o}, as
the z chosen in that case satisfies

. —_ * 67‘% — ||IC||1
dist3(z,S7) = (<]>\c||2”H

Nevertheless, in the following we will show that ay > min{cj, co} when min{ecy, co} is small.

2
) = ((c2 + c1) + cae — ||c||1)? = (c26)* = dist3(0, F(2)) .

Numerical lower bound for ay. To check that az, > min{c, co} when min{cy, co} is small, let

Ar O1x3
Oz AT 0 -1 0
G={zcR"™:Hz<0}, where H= |0y —AT and I3 =
0o 0 -1
O2x2 I3
LT 1,7
7¢  gb

From [43, Lemma 3 (c)] and the invariance to translations of the sharpness constants, for any
z* € 8" we have
dist2(0, F(z)) > inf diste(Hz, R™)

B disty(587) © seRnin disty(5,G)

43



where H is the sharpness constant (the inverse of the Hoffman constant) of the homogeneous linear
system Hz < 0. Then, taking into account that D = §* 4+ 7B, we obtain

L= z€D dista(z,8%) T 2€S* 1B, (2% dlStQ(Z S*) -

Furthermore, using the procedure proposed by Pena [48], we can numerically lower bound #. This
way, when min{cy, c2} = 10~7 we obtain numerically a;, > H > 0.036.

Auxiliary results. We prove two auxiliary results used in the derivation of Example 4.7. The
first gives an exact form for the distance to zero of the saddle subdifferential F of the minimax
problem (2). The second relates the set S7 defined in (15) with the solution set of a reduced
optimization problem.

Proposition C.11. For any z = (x,y) € R"™™, the distance to zero of the saddle subdifferential
of the minimazx problem (2) has the following form

dist5(0, 0 (z) + J& (2)y) + | (G(@)1) 13 + |G(@) mp I3 if y =0
00 otherwise

dist3(0, F(2)) = {
where I = {j € [m] : y; = 0} and Jg(z); = 0g;(x) for all j € [m].
Proof. Let z = (x,y) € R™™. Recall that

Fla.y) = [855_55)”&;’?;)] where  £(z.y) = J(x) + (y.G()) ~ rr (v).

By subdifferential calculus, we obtain

0:L(z,y) = Of(x) + J&i(z)y and 9, (—L)(z,y) = {Q;G(:E) + Nro(y) ify >0

otherwise -
Therefore, if y; < 0 for some j € [m] then F(z) = 0, whence dist2(0, F(z)) = co. Then, suppose
y > 0 and fix j € [m]. Note that Nrm(y) = XT:l NR, (y;)- Moreover,

12 e
min |G(x)j_t|2_{max{07G(l‘)]} if y; =0

teNR, (y)) |G (x);]? otherwise -
It follows that
dist2(0, 8, (—L G(x |2
ist3(0, 9y (L) (7,9)) = _ %;gl Z\ )j + %l

—Z min |G (x )j+z]~]2

ZJE NR+ (yj)

= H(G(x)l)+||2 G (@) 113

Gathering up, we obtain
dist3 (0, F(2)) = dist3(0, ;L (x, y)) + dist3(0, 9y (=L)(z, y))
= dist3(0,0f () + J¢ (2)y) + [(G(@) 1)+ 13 + G (@) g a]l3 -
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Consider the simplified primal problem that only incorporates the constraints indexed by B,

min f(z

pp = { *€R" (z) (51)
st.  gj(z) <0 forallje B.

Denote S} C R4, where ¢ = |B|, as the set of primal-dual solutions to the minimax problem

associated to (51)

nin max f(x) + (y,Gp(x)) .

The following proposition establishes that the set S} is equal to S x {On} up to dual coordinates
reordering.

Proposition C.12. Assume that B = {1,...,q}. Then, S; = S x {On}.

Proof. Let Sg € R™™ be the solution to the following system
f(ﬂf) - h’B(y) S 07 GB(‘T) S 0) YB Z 0 and YN = 07
where hp : RY' — RU{+oo0} is such that hp(y) = mingern f(x) + 3 cp5 ¥;9;(x) is, modulo yy, the
dual function of the reduced problem (51). By construction, Sp = S§ x {Oy}. Let z = (x,y) € S.
If z € Eg;/z(z*), from Propositions C.10 and C.3 we obtain z € §* and Gy (x) < 0, respectively.
By complementary slackness, yy = 0. If z & EZ;A/Q(Z*), let 0 =04/(2|z— 2*||p) € (0,1) and
o 0a z—2° =P
=(z,y) =(1—-0)z"+0z=2"+ ———— € By, (27).
z=(z,9) = ( )2¥+0z=2"+ 2 e =2 p 5. (2%)
Since S7 is convex, z € S;. Therefore, as argued in the first case, yy = 0. Hence, since § # 0,
ynv = 071 (yn — (1 — 0)y%) = 0. Furthermore,

hp(y) = min f(z) + JGZ;B y;9;(x) = min f(z) + jez[;n] yigi(z) = h(y).

Then, z € Sg, whence St C Sp. On the other hand, any z = (z,y) € Sp satisfies yy = 0, whence
h(y) = hp(y) and then z € S7. Therefore Sp C Sj. O
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